math_func_neon.h 10.6 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/* NEON implementation of sin, cos, exp and log
 *
 *   Inspired by Intel Approximate Math library, and based on the
 *   corresponding algorithms of the cephes math library
 */

/* Copyright (C) 2011  Julien Pommier
 *
 *  This software is provided 'as-is', without any express or implied
 *  warranty.  In no event will the authors be held liable for any damages
 *  arising from the use of this software.
 *
 *  Permission is granted to anyone to use this software for any purpose,
 *  including commercial applications, and to alter it and redistribute it
 *  freely, subject to the following restrictions:
 *
 *  1. The origin of this software must not be misrepresented; you must not
 *     claim that you wrote the original software. If you use this software
 *     in a product, an acknowledgment in the product documentation would be
 *     appreciated but is not required.
 *  2. Altered source versions must be plainly marked as such, and must not be
 *     misrepresented as being the original software.
 *  3. This notice may not be removed or altered from any source distribution.
 *
 *  (this is the zlib license)
 */
H
Refine  
hjchen2 已提交
41

W
wangliu 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
#pragma once
#include <arm_neon.h>

#define c_inv_mant_mask ~0x7f800000u
#define c_cephes_SQRTHF 0.707106781186547524
#define c_cephes_log_p0 7.0376836292E-2
#define c_cephes_log_p1 -1.1514610310E-1
#define c_cephes_log_p2 1.1676998740E-1
#define c_cephes_log_p3 -1.2420140846E-1
#define c_cephes_log_p4 +1.4249322787E-1
#define c_cephes_log_p5 -1.6668057665E-1
#define c_cephes_log_p6 +2.0000714765E-1
#define c_cephes_log_p7 -2.4999993993E-1
#define c_cephes_log_p8 +3.3333331174E-1
#define c_cephes_log_q1 -2.12194440e-4
#define c_cephes_log_q2 0.693359375

/* natural logarithm computed for 4 simultaneous float
 *   return NaN for x <= 0
 */
static inline float32x4_t log_ps(float32x4_t x) {
  float32x4_t one = vdupq_n_f32(1);

  x = vmaxq_f32(x, vdupq_n_f32(0)); /* force flush to zero on denormal values */
  uint32x4_t invalid_mask = vcleq_f32(x, vdupq_n_f32(0));

  int32x4_t ux = vreinterpretq_s32_f32(x);

  int32x4_t emm0 = vshrq_n_s32(ux, 23);

  /* keep only the fractional part */
  ux = vandq_s32(ux, vdupq_n_s32(c_inv_mant_mask));
  ux = vorrq_s32(ux, vreinterpretq_s32_f32(vdupq_n_f32(0.5f)));
  x = vreinterpretq_f32_s32(ux);

  emm0 = vsubq_s32(emm0, vdupq_n_s32(0x7f));
  float32x4_t e = vcvtq_f32_s32(emm0);

  e = vaddq_f32(e, one);

  /* part2:
   *     if( x < SQRTHF ) {
   *       e -= 1;
   *       x = x + x - 1.0;
   *     } else { x = x - 1.0; }
   */
  uint32x4_t mask = vcltq_f32(x, vdupq_n_f32(c_cephes_SQRTHF));
  float32x4_t tmp =
      vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(x), mask));
  x = vsubq_f32(x, one);
  e = vsubq_f32(
      e, vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(one), mask)));
  x = vaddq_f32(x, tmp);

  float32x4_t z = vmulq_f32(x, x);

  float32x4_t y = vdupq_n_f32(c_cephes_log_p0);
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p1));
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p2));
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p3));
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p4));
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p5));
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p6));
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p7));
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p8));
  y = vmulq_f32(y, x);

  y = vmulq_f32(y, z);

  tmp = vmulq_f32(e, vdupq_n_f32(c_cephes_log_q1));
  y = vaddq_f32(y, tmp);

  tmp = vmulq_f32(z, vdupq_n_f32(0.5f));
  y = vsubq_f32(y, tmp);

  tmp = vmulq_f32(e, vdupq_n_f32(c_cephes_log_q2));
  x = vaddq_f32(x, y);
  x = vaddq_f32(x, tmp);
  x = vreinterpretq_f32_u32(vorrq_u32(
      vreinterpretq_u32_f32(x), invalid_mask));  // negative arg will be NAN
  return x;
}

#define c_exp_hi 88.3762626647949f
#define c_exp_lo -88.3762626647949f

#define c_cephes_LOG2EF 1.44269504088896341
#define c_cephes_exp_C1 0.693359375
#define c_cephes_exp_C2 -2.12194440e-4

#define c_cephes_exp_p0 1.9875691500E-4
#define c_cephes_exp_p1 1.3981999507E-3
#define c_cephes_exp_p2 8.3334519073E-3
#define c_cephes_exp_p3 4.1665795894E-2
#define c_cephes_exp_p4 1.6666665459E-1
#define c_cephes_exp_p5 5.0000001201E-1

/* exp() computed for 4 float at once */
static inline float32x4_t exp_ps(float32x4_t x) {
  float32x4_t tmp, fx;

  float32x4_t one = vdupq_n_f32(1);
  x = vminq_f32(x, vdupq_n_f32(c_exp_hi));
  x = vmaxq_f32(x, vdupq_n_f32(c_exp_lo));

  /* express exp(x) as exp(g + n*log(2)) */
  fx = vmlaq_f32(vdupq_n_f32(0.5f), x, vdupq_n_f32(c_cephes_LOG2EF));

  /* perform a floorf */
  tmp = vcvtq_f32_s32(vcvtq_s32_f32(fx));

  /* if greater, substract 1 */
  uint32x4_t mask = vcgtq_f32(tmp, fx);
  mask = vandq_u32(mask, vreinterpretq_u32_f32(one));

  fx = vsubq_f32(tmp, vreinterpretq_f32_u32(mask));

  tmp = vmulq_f32(fx, vdupq_n_f32(c_cephes_exp_C1));
  float32x4_t z = vmulq_f32(fx, vdupq_n_f32(c_cephes_exp_C2));
  x = vsubq_f32(x, tmp);
  x = vsubq_f32(x, z);

  static const float cephes_exp_p[6] = {c_cephes_exp_p0, c_cephes_exp_p1,
                                        c_cephes_exp_p2, c_cephes_exp_p3,
                                        c_cephes_exp_p4, c_cephes_exp_p5};
  float32x4_t y = vld1q_dup_f32(cephes_exp_p + 0);
  float32x4_t c1 = vld1q_dup_f32(cephes_exp_p + 1);
  float32x4_t c2 = vld1q_dup_f32(cephes_exp_p + 2);
  float32x4_t c3 = vld1q_dup_f32(cephes_exp_p + 3);
  float32x4_t c4 = vld1q_dup_f32(cephes_exp_p + 4);
  float32x4_t c5 = vld1q_dup_f32(cephes_exp_p + 5);

  y = vmulq_f32(y, x);
  z = vmulq_f32(x, x);

  y = vaddq_f32(y, c1);
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, c2);
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, c3);
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, c4);
  y = vmulq_f32(y, x);
  y = vaddq_f32(y, c5);

  y = vmulq_f32(y, z);
  y = vaddq_f32(y, x);
  y = vaddq_f32(y, one);

  /* build 2^n */
  int32x4_t mm;
  mm = vcvtq_s32_f32(fx);
  mm = vaddq_s32(mm, vdupq_n_s32(0x7f));
  mm = vshlq_n_s32(mm, 23);
  float32x4_t pow2n = vreinterpretq_f32_s32(mm);

  y = vmulq_f32(y, pow2n);
  return y;
}

#define c_minus_cephes_DP1 -0.78515625
#define c_minus_cephes_DP2 -2.4187564849853515625e-4
#define c_minus_cephes_DP3 -3.77489497744594108e-8
#define c_sincof_p0 -1.9515295891E-4
#define c_sincof_p1 8.3321608736E-3
#define c_sincof_p2 -1.6666654611E-1
#define c_coscof_p0 2.443315711809948E-005
#define c_coscof_p1 -1.388731625493765E-003
#define c_coscof_p2 4.166664568298827E-002
#define c_cephes_FOPI 1.27323954473516  // 4 / M_PI

/* evaluation of 4 sines & cosines at once.
 *
 *   The code is the exact rewriting of the cephes sinf function.
 *   Precision is excellent as long as x < 8192 (I did not bother to
 *   take into account the special handling they have for greater values
 *   -- it does not return garbage for arguments over 8192, though, but
 *   the extra precision is missing).
 *
 *   Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
 *   surprising but correct result.
 *
 *   Note also that when you compute sin(x), cos(x) is available at
 *   almost no extra price so both sin_ps and cos_ps make use of
 *   sincos_ps..
 */
static inline void sincos_ps(float32x4_t x, float32x4_t *ysin,
                             float32x4_t *ycos) {
  // any x
  float32x4_t xmm1, xmm2, xmm3, y;

  uint32x4_t emm2;

  uint32x4_t sign_mask_sin, sign_mask_cos;
  sign_mask_sin = vcltq_f32(x, vdupq_n_f32(0));
  x = vabsq_f32(x);

  /* scale by 4/Pi */
  y = vmulq_f32(x, vdupq_n_f32(c_cephes_FOPI));

  /* store the integer part of y in mm0 */
  emm2 = vcvtq_u32_f32(y);
  /* j=(j+1) & (~1) (see the cephes sources) */
  emm2 = vaddq_u32(emm2, vdupq_n_u32(1));
  emm2 = vandq_u32(emm2, vdupq_n_u32(~1));
  y = vcvtq_f32_u32(emm2);

  /* get the polynom selection mask
   *     there is one polynom for 0 <= x <= Pi/4
   *     and another one for Pi/4<x<=Pi/2
   *
   *     Both branches will be computed.
   */
  uint32x4_t poly_mask = vtstq_u32(emm2, vdupq_n_u32(2));

  /* The magic pass: "Extended precision modular arithmetic"
   *     x = ((x - y * DP1) - y * DP2) - y * DP3; */
  xmm1 = vmulq_n_f32(y, c_minus_cephes_DP1);
  xmm2 = vmulq_n_f32(y, c_minus_cephes_DP2);
  xmm3 = vmulq_n_f32(y, c_minus_cephes_DP3);
  x = vaddq_f32(x, xmm1);
  x = vaddq_f32(x, xmm2);
  x = vaddq_f32(x, xmm3);

  sign_mask_sin = veorq_u32(sign_mask_sin, vtstq_u32(emm2, vdupq_n_u32(4)));
  sign_mask_cos = vtstq_u32(vsubq_u32(emm2, vdupq_n_u32(2)), vdupq_n_u32(4));

  /* Evaluate the first polynom  (0 <= x <= Pi/4) in y1,
   *     and the second polynom      (Pi/4 <= x <= 0) in y2 */
  float32x4_t z = vmulq_f32(x, x);
  float32x4_t y1, y2;

  y1 = vmulq_n_f32(z, c_coscof_p0);
  y2 = vmulq_n_f32(z, c_sincof_p0);
  y1 = vaddq_f32(y1, vdupq_n_f32(c_coscof_p1));
  y2 = vaddq_f32(y2, vdupq_n_f32(c_sincof_p1));
  y1 = vmulq_f32(y1, z);
  y2 = vmulq_f32(y2, z);
  y1 = vaddq_f32(y1, vdupq_n_f32(c_coscof_p2));
  y2 = vaddq_f32(y2, vdupq_n_f32(c_sincof_p2));
  y1 = vmulq_f32(y1, z);
  y2 = vmulq_f32(y2, z);
  y1 = vmulq_f32(y1, z);
  y2 = vmulq_f32(y2, x);
  y1 = vsubq_f32(y1, vmulq_f32(z, vdupq_n_f32(0.5f)));
  y2 = vaddq_f32(y2, x);
  y1 = vaddq_f32(y1, vdupq_n_f32(1));

  /* select the correct result from the two polynoms */
  float32x4_t ys = vbslq_f32(poly_mask, y1, y2);
  float32x4_t yc = vbslq_f32(poly_mask, y2, y1);
  *ysin = vbslq_f32(sign_mask_sin, vnegq_f32(ys), ys);
  *ycos = vbslq_f32(sign_mask_cos, yc, vnegq_f32(yc));
}

static inline float32x4_t sin_ps(float32x4_t x) {
  float32x4_t ysin, ycos;
  sincos_ps(x, &ysin, &ycos);
  return ysin;
}

static inline float32x4_t cos_ps(float32x4_t x) {
  float32x4_t ysin, ycos;
  sincos_ps(x, &ysin, &ycos);
  return ycos;
}

static inline float32x4_t div_ps(float32x4_t a, float32x4_t b) {
  float32x4_t reciprocal = vrecpeq_f32(b);
  reciprocal = vmulq_f32(vrecpsq_f32(b, reciprocal), reciprocal);
  //     reciprocal = vmulq_f32(vrecpsq_f32(b, reciprocal), reciprocal);
  return vmulq_f32(a, reciprocal);
}

static inline float32x4_t pow_ps(float32x4_t a, float32x4_t b) {
  // pow(x, m) = exp(m * log(x))
  return exp_ps(vmulq_f32(b, log_ps(a)));
}