depthwise_conv_pe.hpp 3.9 KB
Newer Older
C
Chon 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18 19 20
#include "lite/backends/fpga/KD/float16.hpp"
#include "lite/backends/fpga/KD/pe.hpp"
#include "lite/backends/fpga/KD/pe_params.hpp"
#include "lite/backends/fpga/KD/pes/conv_process.hpp"
C
Chon 已提交
21

Y
Yan Chunwei 已提交
22
namespace paddle {
C
Chon 已提交
23 24 25 26 27
namespace zynqmp {

class DepthwiseConvPE : public PE {
 public:
  bool init() {
Y
Yan Chunwei 已提交
28 29 30
    Tensor* output = param_.output;
    output->setAligned(true);
    output->setDataLocation(Device);
C
Chon 已提交
31 32 33 34 35 36 37 38 39
    return true;
  }

  void apply() {
    DepthwiseConvParam& param = param_;
    Tensor* input = param.input;
    Tensor* output = param.output;
    int channel = output->shape().channel();

Y
Yan Chunwei 已提交
40
    float16* b_data = bias_.mutableData<float16>(FP16, param_.bias()->shape());
M
MyPandaShaoxiang 已提交
41 42 43 44 45 46 47 48 49 50 51
    if (param_.bias()->dataType() == FP32) {
      float* new_bias_data = param_.bias()->data<float>();
      // bias从float转换成float16
      for (int i = 0; i < channel; i++) {
        b_data[i] = float_to_half(new_bias_data[i]);
      }
      bias_.flush();
    } else {
      float16* new_bias_data = param_.bias()->data<float16>();
      memcpy(b_data, new_bias_data, channel * sizeof(float16));
      bias_.flush();
C
Chon 已提交
52 53
    }

M
MyPandaShaoxiang 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    if (param_.scale()->dataType() == FP32) {
      float* new_scale_data = param_.scale()->data<float>();
      Tensor* quantized_filter = param.quantizedFilter();
      quantized_filter->mutableData<float16>(FP16, param.filter->shape());
      format_dw_filter(param.filter, param.quantizedFilter(), new_scale_data);

    } else {
      // filter 全为1时,且channal为对齐时
      float16* scale_data = param_.scale()->data<float16>();
      float16* filter_data = param.quantizedFilter()->mutableData<float16>(
          FP16, param.filter->shape());
      memcpy(filter_data,
             scale_data,
             param.filter->shape().numel() * sizeof(float16));
      param.quantizedFilter()->flush();
    }
C
Chon 已提交
70 71

    DWconvArgs args = {0};
Y
Yan Chunwei 已提交
72
    args.bias_address = b_data;
C
Chon 已提交
73
    args.filter_address = param.quantizedFilter()->data<void>();
Y
Yan Chunwei 已提交
74 75
    args.kernel.width = param.filter->shape().height();
    args.kernel.height = param.filter->shape().width();
C
Chon 已提交
76 77 78 79 80 81
    args.kernel.stride_w = param.strides[0];
    args.kernel.stride_h = param.strides[1];
    args.image.address = input->data<void>();
    args.image.channels = input->shape().channel();
    args.image.height = input->shape().height();
    args.image.width = input->shape().width();
M
MyPandaShaoxiang 已提交
82 83
    args.image.pad_width = param.paddings[0];
    args.image.pad_height = param.paddings[1];
C
Chon 已提交
84 85 86 87 88 89 90
    args.image.scale_address = input->scale();
    args.output.address = output->data<void>();
    args.output.scale_address = output->scale();
    args.out_width = param.output->shape().width();
    args.out_height = param.output->shape().height();
    args.sub_conv_num = 1;
    param.args = args;
Y
Yan Chunwei 已提交
91 92 93 94

    inplace_.relu_enable = param_.relu.enabled;
    inplace_.power_enable = false;
    inplace_.normalize_enable = false;
C
Chon 已提交
95 96
  }

Y
Yan Chunwei 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109
  bool dispatch() {
    param_.input->syncToDevice();
    if (param_.relu.enabled) {
      inplace_.relu_enable = param_.relu.enabled;
      config_inplace(inplace_);
    }
    bool ret = compute_fpga_dwconv(param_.args) == 0;
    if (param_.relu.enabled) {
      inplace_.relu_enable = false;
      config_inplace(inplace_);
    }
    return ret;
  }
C
Chon 已提交
110 111 112 113 114

  DepthwiseConvParam& param() { return param_; }

 private:
  DepthwiseConvParam param_;
Y
Yan Chunwei 已提交
115 116
  Tensor bias_;
  InplaceArgs inplace_ = {0};
C
Chon 已提交
117 118 119
};

}  // namespace zynqmp
Y
Yan Chunwei 已提交
120
}  // namespace paddle