model_parser.cc 26.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/model_parser/model_parser.h"
#include <algorithm>
#include <fstream>
#include <limits>
Y
Yan Chunwei 已提交
19
#include <set>
Y
Yan Chunwei 已提交
20 21 22 23
#include "lite/core/scope.h"
#include "lite/core/tensor.h"
#include "lite/core/variable.h"
#include "lite/model_parser/desc_apis.h"
Y
Yan Chunwei 已提交
24
#include "lite/model_parser/naive_buffer/combined_params_desc.h"
Y
Yan Chunwei 已提交
25 26 27 28 29 30 31 32 33 34
#include "lite/model_parser/naive_buffer/param_desc.h"
#include "lite/model_parser/naive_buffer/program_desc.h"
#include "lite/model_parser/naive_buffer/var_desc.h"
#ifndef LITE_ON_TINY_PUBLISH
#include "lite/model_parser/pb/program_desc.h"
#include "lite/model_parser/pb/var_desc.h"
#endif
#include "lite/utils/io.h"

#ifdef LITE_WITH_NPU
35
#include "lite/backends/npu/npu_helper.h"
Y
Yan Chunwei 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
#endif

namespace paddle {
namespace lite {

#ifndef LITE_ON_TINY_PUBLISH
int SizeOfType(framework::proto::VarType::Type type) {
  using Type = framework::proto::VarType::Type;
  switch (static_cast<int>(type)) {
#define DO(desc, type)            \
  case Type::VarType_Type_##desc: \
    return sizeof(type);
    DO(BOOL, bool);
    DO(FP16, float);
    DO(FP32, float);
    DO(INT8, int8_t);
    DO(INT32, int);
    DO(INT64, int64_t);
#undef DO
    default:
      LOG(FATAL) << "unknown data type " << type;
  }
  return -1;
}

void TensorFromStream(std::istream &is, lite::Tensor *tensor) {
  using Type = framework::proto::VarType::Type;
  uint32_t version;
  is.read(reinterpret_cast<char *>(&version), sizeof(version));
  CHECK_EQ(version, 0U) << "Only version 0 is supported";
  // read tensor desc
  framework::proto::VarType::TensorDesc desc;
  {
    // int32_t size
    // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char *>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char *>(buf.get()), size);
    CHECK(desc.ParseFromArray(buf.get(), size)) << "Cannot parse tensor desc";
  }

  // read tensor
  std::vector<int64_t> dims_vec;
  std::copy(
      desc.dims().begin(), desc.dims().end(), std::back_inserter(dims_vec));
  lite::DDim dims(dims_vec);
  tensor->Resize(dims);
  void *buf;
  size_t size = tensor->dims().production() * SizeOfType(desc.data_type());
  // alllocate memory
  switch (static_cast<int>(desc.data_type())) {
88 89 90 91 92 93 94 95 96 97 98 99 100
#define SET_TENSOR(desc, type, precision) \
  case Type::VarType_Type_##desc:         \
    buf = tensor->mutable_data<type>();   \
    tensor->set_precision(precision);     \
    break

    // SET_TENSOR(BOOL, bool, PRECISION(kBool));
    SET_TENSOR(FP32, float, PRECISION(kFloat));
    SET_TENSOR(INT8, int8_t, PRECISION(kInt8));
    SET_TENSOR(INT16, int16_t, PRECISION(kInt16));
    SET_TENSOR(INT32, int32_t, PRECISION(kInt32));
    SET_TENSOR(INT64, int64_t, PRECISION(kInt64));
#undef SET_TENSOR
Y
Yan Chunwei 已提交
101 102 103
    default:
      LOG(FATAL) << "unknown type " << desc.data_type();
  }
104
  tensor->set_persistable(true);
Y
Yan Chunwei 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

  is.read(static_cast<char *>(buf), size);
}

void LoadLoDTensor(std::istream &is, Variable *var) {
  auto *tensor = var->GetMutable<lite::Tensor>();
  uint32_t version{};
  is.read(reinterpret_cast<char *>(&version), sizeof(version));
  VLOG(3) << "model version " << version;

  // Load LoD information
  uint64_t lod_level{};
  is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size;
    is.read(reinterpret_cast<char *>(&size), sizeof(size));
    std::vector<uint64_t> tmp(size / sizeof(uint64_t));
    is.read(reinterpret_cast<char *>(tmp.data()),
            static_cast<std::streamsize>(size));
    lod[i] = tmp;
  }

  TensorFromStream(is, tensor);
}

void ReadBinaryFile(const std::string &filename, std::string *contents) {
  std::ifstream fin(filename, std::ios::in | std::ios::binary);
  CHECK(fin.is_open()) << "Cannot open file: " << filename;
  fin.seekg(0, std::ios::end);
  auto size = fin.tellg();
  contents->clear();
  contents->resize(size);
  fin.seekg(0, std::ios::beg);
  fin.read(&(contents->at(0)), contents->size());
  fin.close();
}

std::unique_ptr<framework::proto::ProgramDesc> LoadProgram(
145
    const std::string &path, bool program_from_memory) {
Y
Yan Chunwei 已提交
146 147
  std::unique_ptr<framework::proto::ProgramDesc> main_program(
      new framework::proto::ProgramDesc);
148 149 150 151 152 153 154
  if (!program_from_memory) {
    std::string desc_str;
    ReadBinaryFile(path, &desc_str);
    main_program->ParseFromString(desc_str);
  } else {
    main_program->ParseFromString(path);
  }
Y
Yan Chunwei 已提交
155 156 157 158 159 160 161 162 163 164 165 166
  return main_program;
}

void LoadParams(const std::string &path) {}

// Load directly to CPU, and latter transfer to other devices.
void LoadParam(const std::string &path, Variable *out) {
  std::ifstream fin(path, std::ios::binary);
  CHECK(fin.is_open()) << "failed to open file " << path;
  LoadLoDTensor(fin, out);
}

167 168 169 170 171 172 173 174 175 176 177
bool IsPersistable(const cpp::VarDesc &var) {
  if (var.Persistable() && var.GetType() != VarDescAPI::Type::FEED_MINIBATCH &&
      var.GetType() != VarDescAPI::Type::FETCH_LIST &&
      var.GetType() != VarDescAPI::Type::RAW) {
    return true;
  }
  return false;
}

void LoadCombinedParamsPb(const std::string &path,
                          lite::Scope *scope,
178 179
                          const cpp::ProgramDesc &cpp_prog,
                          bool params_from_memory) {
180 181 182 183 184 185 186 187 188 189 190 191 192 193
  CHECK(scope);
  auto prog = cpp_prog;
  auto &main_block_desc = *prog.GetBlock<cpp::BlockDesc>(0);

  // Get vars
  std::vector<std::string> paramlist;
  for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) {
    auto &var = *main_block_desc.GetVar<cpp::VarDesc>(i);
    if (!IsPersistable(var)) continue;
    paramlist.push_back(var.Name());
  }
  std::sort(paramlist.begin(), paramlist.end());

  // Load vars
194 195 196 197 198 199 200 201 202 203
  auto load_var_func = [&](std::istream &is) {
    for (size_t i = 0; i < paramlist.size(); ++i) {
      auto *var = scope->Var(paramlist[i]);
      // Error checking
      CHECK(static_cast<bool>(is))
          << "There is a problem with loading model parameters";
      LoadLoDTensor(is, var);
    }
    is.peek();
    CHECK(is.eof()) << "You are not allowed to load partial data via"
204
                    << " LoadCombinedParamsPb, use LoadParam instead.";
205 206 207 208 209 210 211 212 213 214
  };

  if (params_from_memory) {
    std::stringstream fin(path, std::ios::in | std::ios::binary);
    load_var_func(fin);
  } else {
    std::ifstream fin(path, std::ios::binary);
    CHECK(fin.is_open());
    load_var_func(fin);
  }
215 216
}

Y
Yan Chunwei 已提交
217
void LoadModelPb(const std::string &model_dir,
218 219
                 const std::string &model_file,
                 const std::string &param_file,
Y
Yan Chunwei 已提交
220
                 Scope *scope,
221
                 cpp::ProgramDesc *cpp_prog,
222 223
                 bool combined,
                 bool model_from_memory) {
Y
Yan Chunwei 已提交
224 225 226 227 228
  CHECK(cpp_prog);
  CHECK(scope);
  cpp_prog->ClearBlocks();

  // Load model
229
  VLOG(4) << "Start load model program...";
230 231 232 233
  std::string prog_path = model_dir + "/__model__";
  if (combined) {
    prog_path = model_file;
  }
234 235
  framework::proto::ProgramDesc pb_proto_prog =
      *LoadProgram(prog_path, model_from_memory);
Y
Yan Chunwei 已提交
236 237 238 239 240 241
  pb::ProgramDesc pb_prog(&pb_proto_prog);
  // Transform to cpp::ProgramDesc
  TransformProgramDescAnyToCpp(pb_prog, cpp_prog);

  // Load Params
  // NOTE: Only main block be used now.
242 243 244 245 246
  VLOG(4) << "Start load model params...";
  CHECK(!(!combined && model_from_memory))
      << "If you want use the model_from_memory,"
      << " you should load the combined model using cfg.set_model_buffer "
         "interface.";
247
  if (combined) {
248
    LoadCombinedParamsPb(param_file, scope, *cpp_prog, model_from_memory);
249 250 251 252 253
  } else {
    auto main_block = pb_proto_prog.blocks(0);
    for (auto &var : main_block.vars()) {
      if (var.name() == "feed" || var.name() == "fetch" || !var.persistable())
        continue;
Y
Yan Chunwei 已提交
254

255 256
      std::string file_path = model_dir + "/" + var.name();
      VLOG(4) << "reading weight " << var.name();
Y
Yan Chunwei 已提交
257

258 259 260 261 262 263 264 265
      std::ifstream file(file_path);
      switch (var.type().type()) {
        case framework::proto::VarType_Type_LOD_TENSOR:
          LoadLoDTensor(file, scope->Var(var.name()));
          break;
        default:
          CHECK(false) << "unknown weight type";
      }
Y
Yan Chunwei 已提交
266 267
    }
  }
268

Y
Yan Chunwei 已提交
269
#ifdef LITE_WITH_NPU
270
  auto main_block = pb_proto_prog.blocks(0);
Y
Yan Chunwei 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
  for (auto &op : main_block.ops()) {
    LOG(INFO) << "op type:" << op.type();
    if (op.type() != "graph_op") {
      continue;
    }
    auto xs = op.attrs();
    auto it = std::find_if(
        xs.begin(), xs.end(), [&](const framework::proto::OpDesc_Attr &x) {
          return x.name() == "model_name";
        });
    CHECK(it != xs.end());
    auto model_name = it->s();
    std::string file_path = model_dir + "/" + model_name;
    CHECK(npu::BuildNPUClient(file_path, model_name))
        << "NPU model load failed!";
  }
#endif
  VLOG(4) << "Load protobuf model in '" << model_dir << "'' successfully";
}

void SaveModelPb(const std::string &model_dir,
                 const Scope &exec_scope,
293 294
                 const cpp::ProgramDesc &cpp_prog,
                 bool combined) {
Y
Yan Chunwei 已提交
295 296 297 298 299 300
  MkDirRecur(model_dir);
  // Save program
  framework::proto::ProgramDesc pb_proto_prog;
  pb::ProgramDesc pb_prog(&pb_proto_prog);
  TransformProgramDescCppToAny(cpp_prog, &pb_prog);

301 302 303 304
  std::string prog_path = model_dir + "/__model__";
  if (combined) {
    prog_path = model_dir + "/model";
  }
Y
Yan Chunwei 已提交
305 306 307 308 309 310 311 312
  std::ofstream model_ostream(prog_path, std::ios_base::binary);
  CHECK(model_ostream.is_open());
  const std::string pb_str = pb_proto_prog.SerializeAsString();
  model_ostream.write(pb_str.c_str(), pb_str.size());
  model_ostream.close();

  // Save Params
  // NOTE: Only main block be used now.
313 314 315 316 317 318 319 320 321 322 323 324 325 326
  if (combined) {
    const std::string combined_params_path = model_dir + "/params";
    SaveCombinedParamsPb(combined_params_path, exec_scope, cpp_prog);
  } else {
    for (auto &item : pb_proto_prog.blocks(0).vars()) {
      if (item.name() == "feed" || item.name() == "fetch" ||
          !item.persistable())
        continue;
      const std::string path = model_dir + "/" + item.name();
      std::ofstream var_ostream(path, std::ios::binary);
      CHECK(var_ostream.is_open());
      SerializeTensor(var_ostream, exec_scope, item.name());
      var_ostream.close();
    }
Y
Yan Chunwei 已提交
327 328 329 330
  }
  VLOG(4) << "Save protobuf model in '" << model_dir << "'' successfully";
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
void SaveCombinedParamsPb(const std::string &path,
                          const lite::Scope &exec_scope,
                          const cpp::ProgramDesc &cpp_prog) {
  auto prog = cpp_prog;
  auto &main_block_desc = *prog.GetBlock<cpp::BlockDesc>(0);

  // Get vars
  std::vector<std::string> paramlist;
  for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) {
    auto &var = *main_block_desc.GetVar<cpp::VarDesc>(i);
    if (!IsPersistable(var)) continue;
    paramlist.push_back(var.Name());
  }
  std::sort(paramlist.begin(), paramlist.end());

  // Load vars
  std::ofstream file(path);
  CHECK(file.is_open());
  for (size_t i = 0; i < paramlist.size(); ++i) {
    SerializeTensor(file, exec_scope, paramlist[i]);
  }
  file.close();
}

Y
Yan Chunwei 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
void TensorToStream(std::ostream &os, const lite::Tensor &tensor) {
  // the 1st field, uint32_t version
  constexpr uint32_t version = 0;
  os.write(reinterpret_cast<const char *>(&version), sizeof(version));

  {
    uint64_t size = tensor.lod().size();
    // the 2st field, LoD information
    // uint64_t lod_level
    // uint64_t lod_level_1 size in byte.
    // int*     lod_level_1 data
    // ...
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));

    for (auto &each : tensor.lod()) {
      size = each.size() * sizeof(each.front());
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      os.write(reinterpret_cast<const char *>(each.data()),
               static_cast<std::streamsize>(size));
    }
  }

  // There are two version fields in a LoDTensor.
  os.write(reinterpret_cast<const char *>(&version), sizeof(version));

  {  // the 2nd field, tensor description
    // int32_t  size
    // void*    protobuf message
    framework::proto::VarType::TensorDesc desc;
    // TODO(Superjomn) support other data types.
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
    switch (tensor.precision()) {
#define SET_DATA_TYPE(precision, type_desc) \
  case precision:                           \
    desc.set_data_type(type_desc);          \
    break

      SET_DATA_TYPE(PRECISION(kFloat), framework::proto::VarType_Type_FP32);
      SET_DATA_TYPE(PRECISION(kInt8), framework::proto::VarType_Type_INT8);
      SET_DATA_TYPE(PRECISION(kInt16), framework::proto::VarType_Type_INT16);
      SET_DATA_TYPE(PRECISION(kInt32), framework::proto::VarType_Type_INT32);
      SET_DATA_TYPE(PRECISION(kInt64), framework::proto::VarType_Type_INT64);
#undef SET_DATA_TYPE
      default:
        LOG(FATAL) << "unknown precision type: "
                   << PrecisionToStr(tensor.precision());
    }
Y
Yan Chunwei 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
    auto dims = tensor.dims();
    auto *pb_dims = desc.mutable_dims();
    pb_dims->Resize(static_cast<int>(dims.size()), 0);
    auto dims_vec = dims.Vectorize();
    std::copy(dims_vec.begin(), dims_vec.end(), pb_dims->begin());
    int32_t size = desc.ByteSize();
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));
    auto out = desc.SerializeAsString();
    os.write(out.data(), size);
  }
  {  // the 3rd field, tensor data
    uint64_t size = tensor.memory_size();
    CHECK_LT(size, std::numeric_limits<std::streamsize>::max())
        << "Index overflow when writing tensor";

#ifdef LITE_WITH_CUDA
    if (tensor.target() == TARGET(kCUDA)) {
      std::unique_ptr<char> tmp_buffer(new char[size]);
      TargetWrapperCuda::MemcpySync(tmp_buffer.get(),
                                    tensor.data<float>(),
                                    tensor.data_size(),
                                    IoDirection::DtoH);
      os.write(static_cast<const char *>(tmp_buffer.get()),
               static_cast<std::streamsize>(size));
    } else  // NOLINT
#endif      // LITE_WITH_CUDA
    {
      os.write(static_cast<const char *>(tensor.data<void>()),
               static_cast<std::streamsize>(size));
    }
  }
}

void SerializeTensor(std::ostream &os,
                     const lite::Scope &scope,
                     const std::string &var_name) {
  // Store all the persistable vars.
  auto *var = scope.FindVar(var_name);
  const auto &tensor = var->Get<lite::Tensor>();
  TensorToStream(os, tensor);
}

/// For navie buffer
Y
Yan Chunwei 已提交
444 445 446 447 448 449
void SetParamInfoNaive(naive_buffer::ParamDesc *param_desc,
                       const lite::Scope &scope,
                       const std::string &var_name) {
  CHECK(param_desc);
  auto &desc = *param_desc;

Y
Yan Chunwei 已提交
450 451 452 453 454 455
  // the 1st field, uint32_t version
  constexpr uint32_t version = 0;

  auto *var = scope.FindVar(var_name);
  const auto &tensor = var->Get<lite::Tensor>();

Y
Yan Chunwei 已提交
456
  desc.SetName(var_name);
Y
Yan Chunwei 已提交
457 458 459 460 461 462 463 464

  desc.SetModelVersion(version);
  desc.SetTensorVersion(version);

  desc.SetLoDLevel(tensor.lod().size());
  desc.SetLoD(tensor.lod());

  // TODO(sangoly): support other data types.
465 466 467 468
  switch (tensor.precision()) {
#define SET_DATA_TYPE(precision, type_desc) \
  case precision:                           \
    desc.SetDataType(type_desc);            \
469
    break;
470 471 472 473 474 475 476 477 478 479 480

    SET_DATA_TYPE(PRECISION(kFloat), VarDescAPI::VarDataType::FP32);
    SET_DATA_TYPE(PRECISION(kInt8), VarDescAPI::VarDataType::INT8);
    SET_DATA_TYPE(PRECISION(kInt16), VarDescAPI::VarDataType::INT16);
    SET_DATA_TYPE(PRECISION(kInt32), VarDescAPI::VarDataType::INT32);
    SET_DATA_TYPE(PRECISION(kInt64), VarDescAPI::VarDataType::INT64);
#undef SET_DATA_TYPE
    default:
      LOG(FATAL) << "unknown precision type: "
                 << PrecisionToStr(tensor.precision());
  }
Y
Yan Chunwei 已提交
481 482 483 484 485 486 487
  desc.SetDim(tensor.dims().Vectorize());
  uint64_t size = tensor.memory_size();
  CHECK_LT(size, std::numeric_limits<std::streamsize>::max())
      << "Index overflow when writing tensor";

#ifdef LITE_WITH_CUDA
  if (tensor.target() == TARGET(kCUDA)) {
488 489
    switch (tensor.precision()) {
#define DO(precision, type)                                         \
490
  case precision: {                                                 \
491 492 493 494 495 496
    std::unique_ptr<type> tmp_buffer(new type[tensor.data_size()]); \
    TargetWrapperCuda::MemcpySync(tmp_buffer.get(),                 \
                                  tensor.data<type>(),              \
                                  tensor.data_size(),               \
                                  IoDirection::DtoH);               \
    desc.SetData<type>(tmp_buffer.get(), tensor.data_size());       \
497
  } break;
498 499 500 501 502 503 504 505 506 507
      DO(PRECISION(kFloat), float);
      DO(PRECISION(kInt8), int8_t);
      DO(PRECISION(kInt16), int16_t);
      DO(PRECISION(kInt32), int32_t);
      DO(PRECISION(kInt64), int64_t);
#undef DO
      default:
        LOG(FATAL) << "unknown precision type: "
                   << PrecisionToStr(tensor.precision());
    }
Y
Yan Chunwei 已提交
508 509 510
  } else  // NOLINT
#endif    // LITE_WITH_CUDA
  {
511 512 513 514
    switch (tensor.precision()) {
#define DO(precision, type)                                      \
  case precision:                                                \
    desc.SetData<type>(tensor.data<type>(), tensor.data_size()); \
515
    break;
516 517 518 519 520 521 522 523 524 525
      DO(PRECISION(kFloat), float);
      DO(PRECISION(kInt8), int8_t);
      DO(PRECISION(kInt16), int16_t);
      DO(PRECISION(kInt32), int32_t);
      DO(PRECISION(kInt64), int64_t);
#undef DO
      default:
        LOG(FATAL) << "unknown precision type: "
                   << PrecisionToStr(tensor.precision());
    }
Y
Yan Chunwei 已提交
526
  }
Y
Yan Chunwei 已提交
527 528 529 530 531 532 533 534 535 536
}

void SaveParamNaive(const std::string &path,
                    const lite::Scope &scope,
                    const std::string &var_name) {
  naive_buffer::BinaryTable table;
  naive_buffer::proto::ParamDesc pt_desc(&table);
  naive_buffer::ParamDesc desc(&pt_desc);

  SetParamInfoNaive(&desc, scope, var_name);
Y
Yan Chunwei 已提交
537 538 539 540 541 542

  // Save param
  pt_desc.Save();
  table.SaveToFile(path);
}

Y
Yan Chunwei 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
void SaveCombinedParamsNaive(const std::string &path,
                             const lite::Scope &exec_scope,
                             const cpp::ProgramDesc &cpp_prog) {
  naive_buffer::BinaryTable table;
  naive_buffer::proto::CombinedParamsDesc pt_desc(&table);
  naive_buffer::CombinedParamsDesc desc(&pt_desc);

  auto prog = cpp_prog;
  auto &main_block_desc = *prog.GetBlock<cpp::BlockDesc>(0);
  for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) {
    auto &var = *main_block_desc.GetVar<cpp::VarDesc>(i);
    if (var.Name() == "feed" || var.Name() == "fetch" || !var.Persistable())
      continue;
    naive_buffer::ParamDesc param_desc(desc.AddParam());
    SetParamInfoNaive(&param_desc, exec_scope, var.Name());
  }

  pt_desc.Save();
  table.SaveToFile(path);
}

Y
Yan Chunwei 已提交
564 565
void SaveModelNaive(const std::string &model_dir,
                    const Scope &exec_scope,
Y
Yan Chunwei 已提交
566 567
                    const cpp::ProgramDesc &cpp_prog,
                    bool combined) {
Y
Yan Chunwei 已提交
568 569
  MkDirRecur(model_dir);
  // Save program
Y
Yan Chunwei 已提交
570
  const std::string prog_path = model_dir + "/__model__.nb";
Y
Yan Chunwei 已提交
571 572 573 574 575 576 577 578 579
  naive_buffer::BinaryTable table;
  naive_buffer::proto::ProgramDesc nb_proto_prog(&table);
  naive_buffer::ProgramDesc nb_prog(&nb_proto_prog);
  TransformProgramDescCppToAny(cpp_prog, &nb_prog);
  nb_proto_prog.Save();
  table.SaveToFile(prog_path);

  // Save Params
  // NOTE: Only main block be used now.
Y
Yan Chunwei 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592
  if (combined) {
    const std::string combined_params_path = model_dir + "/param.nb";
    SaveCombinedParamsNaive(combined_params_path, exec_scope, cpp_prog);
  } else {
    auto prog = cpp_prog;
    auto &main_block_desc = *prog.GetBlock<cpp::BlockDesc>(0);
    for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) {
      auto &var = *main_block_desc.GetVar<cpp::VarDesc>(i);
      if (var.Name() == "feed" || var.Name() == "fetch" || !var.Persistable())
        continue;
      const std::string path = model_dir + "/" + var.Name() + ".nb";
      SaveParamNaive(path, exec_scope, var.Name());
    }
Y
Yan Chunwei 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606
  }
  VLOG(4) << "Save naive buffer model in '" << model_dir << "'' successfully";
}
#endif

template <typename T>
void SetTensorDataNaive(T *out, size_t size, const std::vector<T> &src) {
  CHECK(out);
  CHECK(size == src.size());
  for (size_t i = 0; i < size; ++i) {
    out[i] = src[i];
  }
}

Y
Yan Chunwei 已提交
607 608 609
void GetParamInfoNaive(const naive_buffer::ParamDesc &desc,
                       lite::Scope *scope,
                       const std::string &name) {
Y
Yan Chunwei 已提交
610
  CHECK(scope);
Y
Yan Chunwei 已提交
611 612 613
  CHECK_EQ(desc.Name(), name)
      << "Var name not equal: ParamDesc.name=" << desc.Name()
      << "vs filename=" << name;
Y
Yan Chunwei 已提交
614

Y
Yan Chunwei 已提交
615
  auto *tensor = scope->Var(name)->GetMutable<lite::Tensor>();
Y
Yan Chunwei 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628 629

  VLOG(3) << "model version " << desc.ModelVersion();
  CHECK_EQ(desc.TensorVersion(), 0U) << "Only version 0 is supported";

  // Load LoD info
  auto *tgt_lod = tensor->mutable_lod();
  auto desc_lod = desc.LoD();
  tgt_lod->assign(desc_lod.begin(), desc_lod.end());

  // Load Dim info
  tensor->Resize(lite::DDim(desc.Dim()));

  // Load data
  switch (desc.GetDataType()) {
630
#define SET_TENSOR(data_type__, T, precision)                            \
Y
Yan Chunwei 已提交
631 632 633
  case VarDescAPI::VarDataType::data_type__:                             \
    SetTensorDataNaive<T>(                                               \
        tensor->mutable_data<T>(), tensor->data_size(), desc.Data<T>()); \
634
    tensor->set_precision(precision);                                    \
Y
Yan Chunwei 已提交
635 636
    break

637 638 639 640 641 642 643
    // SET_TENSOR(BOOL, bool, PRECISION(kBool));
    SET_TENSOR(FP32, float, PRECISION(kFloat));
    SET_TENSOR(INT8, int8_t, PRECISION(kInt8));
    SET_TENSOR(INT16, int16_t, PRECISION(kInt16));
    SET_TENSOR(INT32, int32_t, PRECISION(kInt32));
    SET_TENSOR(INT64, int64_t, PRECISION(kInt64));
#undef SET_TENSOR
Y
Yan Chunwei 已提交
644 645 646
    default:
      LOG(FATAL) << "unknown type";
  }
647
  tensor->set_persistable(true);
Y
Yan Chunwei 已提交
648 649
}

Y
Yan Chunwei 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663
void LoadParamNaive(const std::string &path,
                    lite::Scope *scope,
                    const std::string &name) {
  // Load param
  naive_buffer::BinaryTable table;
  table.LoadFromFile(path);
  naive_buffer::proto::ParamDesc pt_desc(&table);
  pt_desc.Load();
  naive_buffer::ParamDesc desc(&pt_desc);
  GetParamInfoNaive(desc, scope, name);
}

void LoadCombinedParamsNaive(const std::string &path,
                             lite::Scope *scope,
664 665
                             const cpp::ProgramDesc &cpp_prog,
                             bool params_from_memory) {
Y
Yan Chunwei 已提交
666
  naive_buffer::BinaryTable table;
667 668 669 670 671
  if (params_from_memory) {
    table.LoadFromMemory(path.c_str(), path.length());
  } else {
    table.LoadFromFile(path);
  }
Y
Yan Chunwei 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
  naive_buffer::proto::CombinedParamsDesc pt_desc(&table);
  pt_desc.Load();
  naive_buffer::CombinedParamsDesc desc(&pt_desc);

  std::set<std::string> param_names;
  for (size_t i = 0; i < desc.ParamsSize(); ++i) {
    naive_buffer::ParamDesc param_desc(desc.GetParam(i));
    GetParamInfoNaive(param_desc, scope, param_desc.Name());
    param_names.insert(param_desc.Name());
  }

  // Check all params loaded
  auto prog = cpp_prog;
  auto &main_block_desc = *prog.GetBlock<cpp::BlockDesc>(0);
  for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) {
    auto &var = *main_block_desc.GetVar<cpp::VarDesc>(i);
    if (var.Name() == "feed" || var.Name() == "fetch" || !var.Persistable())
      continue;
    CHECK(param_names.count(var.Name())) << "Persistable var[" << var.Name()
                                         << "] not found";
  }
}

Y
Yan Chunwei 已提交
695 696
void LoadModelNaive(const std::string &model_dir,
                    Scope *scope,
Y
Yan Chunwei 已提交
697 698
                    cpp::ProgramDesc *cpp_prog,
                    bool combined) {
Y
Yan Chunwei 已提交
699 700 701 702 703
  CHECK(cpp_prog);
  CHECK(scope);
  cpp_prog->ClearBlocks();

  // Load model
Y
Yan Chunwei 已提交
704
  const std::string prog_path = model_dir + "/__model__.nb";
Y
Yan Chunwei 已提交
705 706 707 708 709 710 711 712 713 714 715
  naive_buffer::BinaryTable table;
  table.LoadFromFile(prog_path);
  naive_buffer::proto::ProgramDesc nb_proto_prog(&table);
  nb_proto_prog.Load();
  naive_buffer::ProgramDesc nb_prog(&nb_proto_prog);

  // Transform to cpp::ProgramDesc
  TransformProgramDescAnyToCpp(nb_prog, cpp_prog);

  // Load Params
  // NOTE: Only main block be used now.
Y
Yan Chunwei 已提交
716 717
  if (combined) {
    const std::string combined_params_path = model_dir + "/param.nb";
718
    LoadCombinedParamsNaive(combined_params_path, scope, *cpp_prog, false);
Y
Yan Chunwei 已提交
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
  } else {
    auto &prog = *cpp_prog;
    auto &main_block_desc = *prog.GetBlock<cpp::BlockDesc>(0);
    for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) {
      auto &var = *main_block_desc.GetVar<cpp::VarDesc>(i);
      if (var.Name() == "feed" || var.Name() == "fetch" || !var.Persistable())
        continue;

      std::string file_path = model_dir + "/" + var.Name() + ".nb";
      VLOG(4) << "reading weight " << var.Name();

      switch (var.GetType()) {
        case VarDescAPI::Type::LOD_TENSOR:
          LoadParamNaive(file_path, scope, var.Name());
          break;
        default:
          CHECK(false) << "unknown weight type";
      }
Y
Yan Chunwei 已提交
737 738 739 740
    }
  }

#ifdef LITE_WITH_NPU
Y
Yan Chunwei 已提交
741 742
  auto &prog = *cpp_prog;
  auto &main_block_desc = *prog.GetBlock<cpp::BlockDesc>(0);
Y
Yan Chunwei 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
  for (size_t i = 0; i < main_block_desc.OpsSize(); ++i) {
    auto &op = *main_block_desc.GetOp<cpp::OpDesc>(i);
    if (op.Type() != "graph_op") {
      continue;
    }
    auto model_name = op.GetAttr<std::string>("model_name");
    std::string file_path = model_dir + "/" + model_name;
    CHECK(npu::BuildNPUClient(file_path, model_name))
        << "NPU model load failed!";
  }
#endif

  VLOG(4) << "Load naive buffer model in '" << model_dir << "' successfully";
}

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
void LoadModelNaiveFromMemory(const std::string &model_buffer,
                              const std::string &param_buffer,
                              Scope *scope,
                              cpp::ProgramDesc *cpp_prog) {
  CHECK(cpp_prog);
  CHECK(scope);
  cpp_prog->ClearBlocks();

  // Load model

  std::string prog_path = model_buffer;

  naive_buffer::BinaryTable table;
  table.LoadFromMemory(prog_path.c_str(), prog_path.length());

  naive_buffer::proto::ProgramDesc nb_proto_prog(&table);
  nb_proto_prog.Load();
  naive_buffer::ProgramDesc nb_prog(&nb_proto_prog);

  // Transform to cpp::ProgramDesc
  TransformProgramDescAnyToCpp(nb_prog, cpp_prog);

  // Load Params
  // NOTE: Only main block be used now.
  // only combined Params are supported in Loading Model from memory
  std::string combined_params_path = param_buffer;
  LoadCombinedParamsNaive(combined_params_path, scope, *cpp_prog, true);

#ifdef LITE_WITH_NPU
  LOG(FATAL) << "load from memory is not supported by NPU";
#endif

  VLOG(4) << "Load model from naive buffer memory successfully";
}

Y
Yan Chunwei 已提交
793 794
}  // namespace lite
}  // namespace paddle