feed_compute.cc 2.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/cuda/feed_compute.h"
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {

void FeedCompute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<CUDAContext>();
  auto stream = ctx.exec_stream();
  VLOG(4) << "feed_list.size: " << param.feed_list->size();
  const lite::Tensor& feed_item = (*param.feed_list)[param.col];

  int num = static_cast<int>(feed_item.numel());
  auto input = feed_item.data<float>();
  param.out->Resize(feed_item.dims());
  auto output = param.out->mutable_data<float>(TARGET(kCUDA));
  VLOG(4) << "col: " << param.col << " num:" << num;

  TargetW::MemcpyAsync(
      output, input, num * sizeof(float), IoDirection::HtoD, stream);
}

}  // namespace cuda
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(
    feed, kCUDA, kFloat, kNCHW, paddle::lite::kernels::cuda::FeedCompute, nchw)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNCHW))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNCHW))})
    .Finalize();

REGISTER_LITE_KERNEL(
    feed, kCUDA, kFloat, kNHWC, paddle::lite::kernels::cuda::FeedCompute, nhwc)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNHWC))})
    .Finalize();