test_conv_op.cpp 12.5 KB
Newer Older
H
hjchen2 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "../test_helper.h"
#include "../test_include.h"
#include "operators/conv_op.h"

namespace paddle_mobile {

H
hjchen2 已提交
21
// Reference convolution from Caffe for checking results.
H
hjchen2 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
// accumulate through explicit loops over input, output, and filters.
template <typename Itype, typename Otype>
void conv2d(const framework::Tensor *input, const framework::Tensor *filter,
            const framework::AttributeMap &attrs, framework::Tensor *output) {
  framework::AttrReader attr_reader(attrs);
  std::vector<int> paddings = attr_reader.Get<std::vector<int>>("paddings");
  std::vector<int> strides = attr_reader.Get<std::vector<int>>("strides");
  std::vector<int> dilations = attr_reader.Get<std::vector<int>>("dilations");
  int groups = attr_reader.Get<int>("groups");
  int kernel_h = filter->dims()[2];
  int kernel_w = filter->dims()[3];
  int pad_h = paddings[0];
  int pad_w = paddings[1];
  int stride_h = strides[0];
  int stride_w = strides[1];
  int dilation_h = dilations[0];
  int dilation_w = dilations[1];
  auto in_shape = input->dims();
  auto out_shape = output->dims();

  const bool has_depth = 0;
  int kernel_d, pad_d, stride_d, dilation_d;
  if (has_depth) {
    kernel_d = kernel_h;
    stride_d = stride_h;
    pad_d = pad_h;
    dilation_d = dilation_h;
  } else {
    kernel_d = stride_d = dilation_d = 1;
    pad_d = 0;
  }
  // Groups
  int o_g = out_shape[1] / groups;
  int k_g = in_shape[1] / groups;
  int o_head, k_head;
  // Convolution
  vector<int> weight_offset(4 + has_depth);
  vector<int> in_offset(4 + has_depth);
  vector<int> out_offset(4 + has_depth);
  auto offset = [](const framework::Tensor *input, const vector<int> &indics) {
    framework::DDim shape = input->dims();
    size_t count = 0;
    for (int i = 0; i < indics.size(); ++i) {
      count *= shape[i];
      count += indics[i];
    }
    return count;
  };

  const Itype *in_data = input->data<Itype>();
  const Itype *w_data = filter->data<Itype>();
  Otype *out_data = output->mutable_data<Otype>();
  memset(out_data, 0, output->numel() * sizeof(Otype));
  for (int n = 0; n < out_shape[0]; n++) {
    for (int g = 0; g < groups; g++) {
      o_head = o_g * g;
      k_head = k_g * g;
      for (int o = 0; o < o_g; o++) {
        for (int k = 0; k < k_g; k++) {
          for (int z = 0; z < (has_depth ? out_shape[2] : 1); z++) {
            for (int y = 0; y < out_shape[2 + has_depth]; y++) {
              for (int x = 0; x < out_shape[3 + has_depth]; x++) {
                for (int r = 0; r < kernel_d; r++) {
                  for (int p = 0; p < kernel_h; p++) {
                    for (int q = 0; q < kernel_w; q++) {
                      int in_z = z * stride_d - pad_d + r * dilation_d;
                      int in_y = y * stride_h - pad_h + p * dilation_h;
                      int in_x = x * stride_w - pad_w + q * dilation_w;
                      if (in_z >= 0 && in_z < (has_depth ? in_shape[2] : 1) &&
                          in_y >= 0 && in_y < in_shape[2 + has_depth] &&
                          in_x >= 0 && in_x < in_shape[3 + has_depth]) {
                        weight_offset[0] = o + o_head;
                        weight_offset[1] = k;
                        if (has_depth) {
                          weight_offset[2] = r;
                        }
                        weight_offset[2 + has_depth] = p;
                        weight_offset[3 + has_depth] = q;
                        in_offset[0] = n;
                        in_offset[1] = k + k_head;
                        if (has_depth) {
                          in_offset[2] = in_z;
                        }
                        in_offset[2 + has_depth] = in_y;
                        in_offset[3 + has_depth] = in_x;
                        out_offset[0] = n;
                        out_offset[1] = o + o_head;
                        if (has_depth) {
                          out_offset[2] = z;
                        }
                        out_offset[2 + has_depth] = y;
                        out_offset[3 + has_depth] = x;

                        out_data[offset(output, out_offset)] +=
                            in_data[offset(input, in_offset)] *
                            w_data[offset(filter, weight_offset)];
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}

template <typename Itype, typename Otype, int Kernel, int Pad, int Stride>
132 133
int TestConvOp(int in_channels, int in_height, int in_width, int out_channels,
               int groups) {
H
hjchen2 已提交
134 135 136 137 138 139 140 141 142
  int kernel_h = Kernel;
  int kernel_w = Kernel;
  int pad_h = Pad;
  int pad_w = Pad;
  int stride_h = Stride;
  int stride_w = Stride;
  int dilation_h = 1;
  int dilation_w = 1;

H
hjchen2 已提交
143
  int batch_size = 1;
H
hjchen2 已提交
144 145 146 147
  int input_c = in_channels;
  int input_h = in_height;
  int input_w = in_width;
  int output_c = out_channels;
H
hjchen2 已提交
148 149 150
  framework::DDim input_shape =
      framework::make_ddim({batch_size, input_c, input_h, input_w});
  framework::DDim filter_shape =
151
      framework::make_ddim({output_c, input_c / groups, kernel_h, kernel_w});
H
hjchen2 已提交
152 153 154 155 156 157 158 159 160 161

  VariableNameMap inputs;
  VariableNameMap outputs;
  auto scope = std::make_shared<framework::Scope>();
  inputs["Input"] = std::vector<std::string>({"input"});
  inputs["Filter"] = std::vector<std::string>({"filter"});
  outputs["Output"] = std::vector<std::string>({"output"});

  auto input_var = scope.get()->Var("input");
  auto input = input_var->template GetMutable<framework::LoDTensor>();
H
hjchen2 已提交
162
  SetupTensor<Itype>(input, input_shape, -20.0, 20.0);
H
hjchen2 已提交
163 164 165

  auto filter_var = scope.get()->Var("filter");
  auto filter = filter_var->template GetMutable<framework::LoDTensor>();
166
  SetupTensor<Itype>(filter, filter_shape, -20, 20);
H
hjchen2 已提交
167

168 169 170 171 172 173
  //  for (int i = 0; i < input->numel(); ++i) {
  //    DLOG << "input[" << i << "] = " << float(input->data<Itype>()[i]);
  //  }
  //  for (int i = 0; i < filter->numel(); ++i) {
  //    DLOG << "filter[" << i << "] = " << float(filter->data<Itype>()[i]);
  //  }
174

H
hjchen2 已提交
175 176 177 178 179 180
  auto output_var = scope.get()->Var("output");
  framework::AttributeMap attrs;
  attrs["strides"].Set<vector<int>>(std::vector<int>({stride_h, stride_w}));
  attrs["paddings"].Set<vector<int>>(std::vector<int>({pad_h, pad_w}));
  attrs["dilations"].Set<vector<int>>(
      std::vector<int>({dilation_h, dilation_w}));
181
  attrs["groups"].Set<int>(groups);
H
hjchen2 已提交
182 183 184 185

  auto *op = new operators::ConvOp<CPU, float>("conv2d", inputs, outputs, attrs,
                                               scope);
  op->InferShape();
H
hjchen2 已提交
186 187
  op->Init();
  //  struct timespec ts_begin, ts_end;
188
  // warmup
189 190 191
  //  op->Run();
  //  clock_gettime(CLOCK_MONOTONIC, &ts_begin);
  //  for (int i = 0; i < 10; ++i) {
H
hjchen2 已提交
192
  op->Run();
193 194 195 196 197 198
  //  }
  //  clock_gettime(CLOCK_MONOTONIC, &ts_end);
  //  uint64_t elapsed = (ts_end.tv_sec - ts_begin.tv_sec) * 1e3 +
  //                     (ts_end.tv_nsec - ts_begin.tv_nsec) / 1e6;
  //  LOG(kLOG_INFO) << "elapsed: " << elapsed / 10.0 << " ms";

199 200
  // compare results
  auto *output = output_var->template Get<framework::LoDTensor>();
201
  framework::Tensor output_cmp;
202
  output_cmp.mutable_data<Otype>(output->dims());
203 204 205 206 207
  conv2d<Itype, Otype>(input, filter, attrs, &output_cmp);

  const Otype *output_data = output->data<Otype>();
  Otype *output_cmp_data = output_cmp.data<Otype>();
  for (int i = 0; i < output->numel(); ++i) {
H
hjchen2 已提交
208
    float gap = output_data[i] - output_cmp_data[i];
209 210 211 212 213 214 215 216 217
    //    PADDLE_MOBILE_ENFORCE(std::abs(gap / (output_data[i] + 1e-5)) < 1e-3,
    //                          "output[%d] = %d, output_cmp[%d] = %d", i,
    //                          output_data[i], i, output_cmp_data[i]);
    if (std::abs(gap / (output_data[i] + 1e-5)) > 1e-3) {
      LOG(kLOG_INFO) << "output_data[" << i << "] = " << output_data[i]
                     << ", output_cmp_data[" << i
                     << "] = " << output_cmp_data[i];
      exit(1);
    }
H
hjchen2 已提交
218 219 220 221 222 223 224
  }
  delete op;
  return 0;
}

}  // namespace paddle_mobile

H
hjchen2 已提交
225 226 227 228
int main(int argc, char *argv[]) {
  if (argc < 5) {
    LOG(paddle_mobile::kLOG_INFO)
        << "Usage:\n"
229 230
        << "  ./test-int8-conv-op in_channels in_height in_width out_channels "
           "[groups]\n"
H
hjchen2 已提交
231 232 233 234 235 236 237 238 239 240 241
        << "  params:\n"
        << "   -in_channels: int, input image's channels\n"
        << "   -in_height: int, input image's height\n"
        << "   -in_width: int, input image's width\n"
        << "   -out_channels: int, conv output channels\n";
    return 1;
  }
  int in_channels = atoi(argv[1]);
  int in_height = atoi(argv[2]);
  int in_width = atoi(argv[3]);
  int out_channels = atoi(argv[4]);
242 243 244 245
  int groups = 1;
  if (argc == 6) {
    groups = atoi(argv[5]);
  }
246 247
  // kernel = 3, pad = 0, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=3, pad=0, stride=1";
248 249
  paddle_mobile::TestConvOp<int8_t, int32_t, 3, 0, 1>(
      in_channels, in_height, in_width, out_channels, groups);
250 251
  // kernel = 3, pad = 1, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=3, pad=1, stride=1";
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
  paddle_mobile::TestConvOp<int8_t, int32_t, 3, 1, 1>(
      in_channels, in_height, in_width, out_channels, groups);
  // kernel = 3, pad = 2, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=3, pad=2, stride=1";
  paddle_mobile::TestConvOp<int8_t, int32_t, 3, 2, 1>(
      in_channels, in_height, in_width, out_channels, groups);
  // kernel = 3, pad = 5, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=3, pad=5, stride=1";
  paddle_mobile::TestConvOp<int8_t, int32_t, 3, 5, 1>(
      in_channels, in_height, in_width, out_channels, groups);

  // kernel = 3, pad = 0, stride = 2
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=3, pad=0, stride=2";
  paddle_mobile::TestConvOp<int8_t, int32_t, 3, 0, 2>(
      in_channels, in_height, in_width, out_channels, groups);
  // kernel = 3, pad = 1, stride = 2
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=3, pad=1, stride=2";
  paddle_mobile::TestConvOp<int8_t, int32_t, 3, 1, 2>(
      in_channels, in_height, in_width, out_channels, groups);
  // kernel = 3, pad = 2, stride = 2
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=3, pad=2, stride=2";
  paddle_mobile::TestConvOp<int8_t, int32_t, 3, 2, 2>(
      in_channels, in_height, in_width, out_channels, groups);
  // kernel = 3, pad = 5, stride = 2
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=3, pad=5, stride=2";
  paddle_mobile::TestConvOp<int8_t, int32_t, 3, 5, 2>(
      in_channels, in_height, in_width, out_channels, groups);

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
  // kernel = 5, pad = 0, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=5, pad=0, stride=1";
  paddle_mobile::TestConvOp<float, float, 5, 0, 1>(
      in_channels, in_height, in_width, out_channels, groups);
  // kernel = 5, pad = 1, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=5, pad=1, stride=1";
  paddle_mobile::TestConvOp<float, float, 5, 1, 1>(
      in_channels, in_height, in_width, out_channels, groups);
  // kernel = 5, pad = 2, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=5, pad=2, stride=1";
  paddle_mobile::TestConvOp<float, float, 5, 2, 1>(
      in_channels, in_height, in_width, out_channels, groups);
  // kernel = 5, pad = 5, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "float, kernel=5, pad=5, stride=1";
  paddle_mobile::TestConvOp<float, float, 5, 5, 1>(
      in_channels, in_height, in_width, out_channels, groups);

  // kernel = 5, pad = 0, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=5, pad=0, stride=1";
  paddle_mobile::TestConvOp<int8_t, int32_t, 5, 0, 1>(
      in_channels, in_height, in_width, out_channels, groups);
  // kernel = 5, pad = 1, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=5, pad=1, stride=1";
  paddle_mobile::TestConvOp<int8_t, int32_t, 5, 1, 1>(
      in_channels, in_height, in_width, out_channels, groups);
  // kernel = 5, pad = 2, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=5, pad=2, stride=1";
  paddle_mobile::TestConvOp<int8_t, int32_t, 5, 2, 1>(
      in_channels, in_height, in_width, out_channels, groups);
  // kernel = 5, pad = 5, stride = 1
  LOG(paddle_mobile::kLOG_INFO) << "int8, kernel=5, pad=5, stride=1";
  paddle_mobile::TestConvOp<int8_t, int32_t, 5, 5, 1>(
      in_channels, in_height, in_width, out_channels, groups);

  return 0;
315
}