io.cpp 13.4 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

W
wangliu 已提交
15
#include "io/io.h"
朔-望's avatar
朔-望 已提交
16
#include <fstream>
L
liuruilong 已提交
17
#include <vector>
L
liuruilong 已提交
18
#include "common/enforce.h"
L
liuruilong 已提交
19
#include "common/log.h"
L
liuruilong 已提交
20
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
21 22
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
23
#include "framework/program/program_desc.h"
L
liuruilong 已提交
24 25 26
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
L
liuruilong 已提交
27

朔-望's avatar
朔-望 已提交
28
namespace paddle_mobile {
W
wangliu 已提交
29
using framework::Variable;
朔-望's avatar
朔-望 已提交
30

朔-望's avatar
朔-望 已提交
31
void ReadBinaryFile(const std::string &filename, std::string *contents) {
32
  std::ifstream fin(filename, std::ios::in | std::ios::binary);
L
liuruilong 已提交
33 34
  PADDLE_MOBILE_ENFORCE(fin.is_open(), "open file: %s failed",
                        filename.c_str());
35 36 37 38 39 40
  fin.seekg(0, std::ios::end);
  contents->clear();
  contents->resize(fin.tellg());
  fin.seekg(0, std::ios::beg);
  fin.read(&(contents->at(0)), contents->size());
  fin.close();
朔-望's avatar
朔-望 已提交
41 42
}

L
liuruilong 已提交
43
static size_t ReadBuffer(const char *file_name, uint8_t **out) {
L
liuruilong 已提交
44 45 46
  printf("%s \n", file_name);
  FILE *fp;
  fp = fopen(file_name, "rb");
W
wangliu 已提交
47
  PADDLE_MOBILE_ENFORCE(fp != NULL, " %s open failed !", file_name);
L
liuruilong 已提交
48 49 50 51 52 53 54

  fseek(fp, 0, SEEK_END);
  size_t size = ftell(fp);
  rewind(fp);

  DLOG << "model size: " << size;

55
  *out = reinterpret_cast<uint8_t *>(size);
L
liuruilong 已提交
56 57 58

  size_t cur_len = 0;
  size_t nread;
L
liuruilong 已提交
59
  while ((nread = fread(*out + cur_len, 1, size - cur_len, fp)) != 0) {
L
liuruilong 已提交
60 61 62 63 64 65
    cur_len += nread;
  }
  fclose(fp);
  return cur_len;
}

朔-望's avatar
朔-望 已提交
66
template <typename Dtype, Precision P>
L
liuruilong 已提交
67 68
void Loader<Dtype, P>::LoadVar(framework::Variable *variable,
                               const framework::VarDesc &var_desc,
朔-望's avatar
朔-望 已提交
69
                               const std::string &file_path) {
L
liuruilong 已提交
70
  auto tensor = variable->GetMutable<framework::LoDTensor>();
71
  std::ifstream is(file_path);
L
liuruilong 已提交
72 73
  PADDLE_MOBILE_ENFORCE(is.is_open(), "open file: %s failed",
                        file_path.c_str());
L
liuruilong 已提交
74

朔-望's avatar
朔-望 已提交
75 76
  std::fpos<mbstate_t> pos;
  pos = is.tellg();  // save   current   position
77
  is.seekg(0, std::ios::end);
朔-望's avatar
朔-望 已提交
78
  is.seekg(pos);  // restore   saved   position
79 80 81 82 83 84 85 86 87 88 89 90

  // 1. version
  uint32_t version;
  is.read(reinterpret_cast<char *>(&version), sizeof(version));

  // 2 Lod information
  uint64_t lod_level;
  is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size;
朔-望's avatar
朔-望 已提交
91
    is.read(reinterpret_cast<char *>(&size), sizeof(size));
92 93 94
    std::vector<size_t> tmp(size / sizeof(size_t));
    is.read(reinterpret_cast<char *>(tmp.data()),
            static_cast<std::streamsize>(size));
朔-望's avatar
朔-望 已提交
95 96
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
朔-望's avatar
朔-望 已提交
97
    }
98 99 100 101 102 103 104 105 106 107 108 109 110
    lod[i] = tmp;
  }

  // 3. tensor version
  uint32_t tensor_version;
  is.read(reinterpret_cast<char *>(&tensor_version), sizeof(tensor_version));

  // 4. tensor desc
  int32_t size;
  is.read(reinterpret_cast<char *>(&size), sizeof(size));
  std::unique_ptr<char[]> buf(new char[size]);
  is.read(reinterpret_cast<char *>(buf.get()), size);

L
liuruilong 已提交
111 112
  const framework::TensorDesc &desc = var_desc.Tensor_desc();

L
liuruilong 已提交
113
  PaddleMobile__Framework__Proto__VarType__TensorDesc *tensor_desc = NULL;
L
liuruilong 已提交
114 115 116
  //  void *v;
  //  PaddleMobile__Framework__Proto__VarType__TensorDesc_Closure()(tensor_desc,
  //  buf.get());
L
liuruilong 已提交
117

L
liuruilong 已提交
118 119
  //  DLOG << "PaddleMobile__Framework__Proto__VarType__TensorDesc_Closure- " <<
  //  tensor_desc;
L
liuruilong 已提交
120

L
liuruilong 已提交
121 122 123 124 125 126
  //  framework::TensorDesc &tensor_desc = variable->
  //  PaddleMobile__Framework__Proto__ProgramDesc *c_program;
  //  uint8_t *proto_buf = NULL;
  //  size_t read_size = ReadBuffer(file_path.c_str(), &proto_buf);
  //  c_program = paddle_mobile__framework__proto__program_desc__unpack(NULL,
  //  read_size, buf);
L
liuruilong 已提交
127

L
liuruilong 已提交
128
  //  paddle_mobile__framework__proto__var_type__tensor_desc__init()
129 130

  int memory_size = 1;
L
liuruilong 已提交
131
  for (auto l : desc.Dims()) {
朔-望's avatar
朔-望 已提交
132
    memory_size *= l;
133 134
  }

L
liuruilong 已提交
135
  tensor->Resize(framework::make_ddim(desc.Dims()));
136

朔-望's avatar
朔-望 已提交
137
  void *memory = tensor;
138
  int type_size = 0;
L
liuruilong 已提交
139 140
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
朔-望's avatar
朔-望 已提交
141 142
      type_size = 2;
      break;
L
liuruilong 已提交
143
    case framework::VARTYPE_TYPE_FP32:
朔-望's avatar
朔-望 已提交
144 145 146
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
L
liuruilong 已提交
147
    case framework::VARTYPE_TYPE_FP64:
朔-望's avatar
朔-望 已提交
148 149
      type_size = 8;
      break;
L
liuruilong 已提交
150
    case framework::VARTYPE_TYPE_INT32:
朔-望's avatar
朔-望 已提交
151 152
      type_size = 4;
      break;
L
liuruilong 已提交
153
    case framework::VARTYPE_TYPE_INT64:
朔-望's avatar
朔-望 已提交
154 155
      type_size = 8;
      break;
L
liuruilong 已提交
156
    case framework::VARTYPE_TYPE_BOOL:
朔-望's avatar
朔-望 已提交
157 158 159 160
      type_size = 1;
      break;
    default:
      break;
161 162 163 164
  }

  is.read(static_cast<char *>(memory), memory_size * type_size);
  is.close();
朔-望's avatar
朔-望 已提交
165
}
朔-望's avatar
朔-望 已提交
166 167

template <typename Dtype, Precision P>
朔-望's avatar
朔-望 已提交
168 169
const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
    const std::string &dirname) {
170
  std::string model_filename = dirname + "/__model__";
L
liuruilong 已提交
171 172 173 174 175 176
  PaddleMobile__Framework__Proto__ProgramDesc *c_program;
  uint8_t *buf = NULL;
  size_t read_size = ReadBuffer(model_filename.c_str(), &buf);

  PADDLE_MOBILE_ENFORCE(buf != NULL, "read from __model__ is null");

L
liuruilong 已提交
177 178
  c_program = paddle_mobile__framework__proto__program_desc__unpack(
      NULL, read_size, buf);
L
liuruilong 已提交
179 180 181 182

  PADDLE_MOBILE_ENFORCE(c_program != NULL, "program is null");

  DLOG << "n_ops: " << (*c_program->blocks)->n_ops;
183 184

  std::shared_ptr<framework::ProgramDesc> originProgramDesc =
L
liuruilong 已提交
185
      std::make_shared<framework::ProgramDesc>(c_program);
186 187

  framework::Program<Dtype, P> program;
L
liuruilong 已提交
188
  program.model_path = dirname;
189 190 191 192 193
  program.originProgram = originProgramDesc;

  std::shared_ptr<framework::Scope> scope =
      std::make_shared<framework::Scope>();
  program.scope = scope;
E
eclipsess 已提交
194 195 196 197 198
  originProgramDesc->Block(0);

  for (const auto &block : originProgramDesc->Blocks()) {
    for (int i = 0; i < block->Vars().size(); ++i) {
      std::shared_ptr<framework::VarDesc> var_desc = block->Vars()[i];
L
liuruilong 已提交
199
      //      DLOG << "var name-- " << var_desc->Name();
E
eclipsess 已提交
200
      auto var = scope->Var(var_desc->Name());
L
liuruilong 已提交
201 202

      if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
E
eclipsess 已提交
203
        if (var_desc->Persistable() &&
L
liuruilong 已提交
204 205
            var_desc->Type() != framework::VARTYPE_TYPE_FEED_MINIBATCH &&
            var_desc->Type() != framework::VARTYPE_TYPE_FETCH_LIST) {
L
liuruilong 已提交
206
          //          DLOG << "to load var ";
W
wangliu 已提交
207 208 209
          auto dim = var_desc->Tensor_desc().Dims();
          auto tensor = var->GetMutable<framework::LoDTensor>();
          tensor->Resize(framework::make_ddim(dim));
L
liuruilong 已提交
210 211
        } else {
          auto dim = var_desc->Tensor_desc().Dims();
E
eclipsess 已提交
212
          PADDLE_MOBILE_ENFORCE(dim.size() > 0, "dim size is 0");
L
liuruilong 已提交
213 214 215
          dim[0] = 1;
          auto tensor = var->GetMutable<framework::LoDTensor>();
          tensor->Resize(framework::make_ddim(dim));
E
eclipsess 已提交
216 217 218 219 220 221
        }
      } else {
        // TODO(codeWorm): some.
      }
    }
  }
222

E
eclipsess 已提交
223
  originProgramDesc->Description("program: ");
朔-望's avatar
朔-望 已提交
224

L
liuruilong 已提交
225
  paddle_mobile__framework__proto__program_desc__free_unpacked(c_program, NULL);
226
  return program;
朔-望's avatar
朔-望 已提交
227
}
朔-望's avatar
朔-望 已提交
228

朔-望's avatar
朔-望 已提交
229
template class Loader<CPU, Precision::FP32>;
朔-望's avatar
朔-望 已提交
230

L
liuruilong 已提交
231 232 233 234 235 236 237 238 239 240
#pragma mark - executor

template <typename Dtype, Precision P>
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p) : program_(p) {
  if (use_optimize_) {
    to_predict_program_ = program_.optimizeProgram;
  } else {
    to_predict_program_ = program_.originProgram;
  }

L
liuruilong 已提交
241 242 243 244 245 246 247
  const std::vector<std::shared_ptr<framework::BlockDesc>> blocks =
      to_predict_program_->Blocks();
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
W
wangliu 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
      op_base->InferShape();
      ops_of_block_[*block_desc.get()].push_back(op_base);
    }
  }
  InitMemory();
}

template <typename Dtype, Precision P>
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size)
    : program_(p), batch_size_(batch_size) {
  if (use_optimize_) {
    to_predict_program_ = program_.optimizeProgram;
  } else {
    to_predict_program_ = program_.originProgram;
  }
  Variable *variable_ptr = program_.scope->Var("batch_size");
  variable_ptr[0].SetValue<int>(batch_size);
  const std::vector<std::shared_ptr<framework::BlockDesc>> blocks =
      to_predict_program_->Blocks();
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
      op_base->InferShape();

      ops_of_block_[*block_desc.get()].push_back(op_base);
L
liuruilong 已提交
281 282 283
    }
  }
  InitMemory();
L
liuruilong 已提交
284 285 286
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
287 288
void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
                                    framework::LoDTensor *tensor,
L
liuruilong 已提交
289
                                    const std::string &file_path) {
L
liuruilong 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
  std::ifstream is(file_path);
  PADDLE_MOBILE_ENFORCE(is.is_open(), "open file: %s failed",
                        file_path.c_str());
  std::fpos<mbstate_t> pos;
  pos = is.tellg();  // save   current   position
  is.seekg(0, std::ios::end);
  is.seekg(pos);  // restore   saved   position

  // 1. version
  uint32_t version;
  is.read(reinterpret_cast<char *>(&version), sizeof(version));

  // 2 Lod information
  uint64_t lod_level;
  is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size;
    is.read(reinterpret_cast<char *>(&size), sizeof(size));
    std::vector<size_t> tmp(size / sizeof(size_t));
    is.read(reinterpret_cast<char *>(tmp.data()),
            static_cast<std::streamsize>(size));
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
    }
    lod[i] = tmp;
  }

  // 3. tensor version
  uint32_t tensor_version;
  is.read(reinterpret_cast<char *>(&tensor_version), sizeof(tensor_version));

  // 4. tensor desc
  int32_t size;
  is.read(reinterpret_cast<char *>(&size), sizeof(size));
  std::unique_ptr<char[]> buf(new char[size]);
  is.read(reinterpret_cast<char *>(buf.get()), size);

L
liuruilong 已提交
329 330
  const framework::TensorDesc &desc = var_desc.Tensor_desc();

L
liuruilong 已提交
331
  int memory_size = 1;
L
liuruilong 已提交
332
  for (auto l : desc.Dims()) {
L
liuruilong 已提交
333 334 335
    memory_size *= l;
  }

L
liuruilong 已提交
336
  tensor->Resize(framework::make_ddim(desc.Dims()));
L
liuruilong 已提交
337 338 339

  void *memory = tensor;
  int type_size = 0;
L
liuruilong 已提交
340 341
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
L
liuruilong 已提交
342 343
      type_size = 2;
      break;
L
liuruilong 已提交
344
    case framework::VARTYPE_TYPE_FP32:
L
liuruilong 已提交
345 346 347
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
L
liuruilong 已提交
348
    case framework::VARTYPE_TYPE_FP64:
L
liuruilong 已提交
349 350
      type_size = 8;
      break;
L
liuruilong 已提交
351
    case framework::VARTYPE_TYPE_INT32:
L
liuruilong 已提交
352 353
      type_size = 4;
      break;
L
liuruilong 已提交
354
    case framework::VARTYPE_TYPE_INT64:
L
liuruilong 已提交
355 356
      type_size = 8;
      break;
L
liuruilong 已提交
357
    case framework::VARTYPE_TYPE_BOOL:
L
liuruilong 已提交
358 359 360 361 362 363 364 365
      type_size = 1;
      break;
    default:
      break;
  }

  is.read(static_cast<char *>(memory), memory_size * type_size);
  is.close();
366
}
L
liuruilong 已提交
367 368 369 370 371 372

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
L
liuruilong 已提交
373 374
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
W
wangliu 已提交
375 376 377
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
378 379
        LoadMemory(*var_desc, tensor,
                   program_.model_path + "/" + var_desc->Name());
L
liuruilong 已提交
380
      } else {
L
liuruilong 已提交
381
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
E
eclipsess 已提交
382
          auto tensor = var->template GetMutable<framework::LoDTensor>();
383

L
liuruilong 已提交
384 385 386
          tensor->template mutable_data<Ptype>();
        }
      }
L
liuruilong 已提交
387 388 389 390 391 392
    }
  }
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::predict(const framework::Tensor &t, int block_id) {
W
wangliu 已提交
393
  framework::Variable *g_feed_value = program_.scope->Var("feed");
E
eclipsess 已提交
394 395
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
W
wangliu 已提交
396 397
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
L
liuruilong 已提交
398
  std::shared_ptr<framework::BlockDesc> to_predict_block =
L
liuruilong 已提交
399
      to_predict_program_->Block(block_id);
L
liuruilong 已提交
400 401 402 403 404 405 406
  for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
    auto op = ops_of_block_[*to_predict_block.get()][j];
    op->Run();
  }
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
407 408
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::predict(
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
409
  framework::Tensor tensor(input, framework::make_ddim(dims));
L
liuruilong 已提交
410 411 412 413 414 415 416 417 418 419 420

  predict(tensor, 0);

  framework::Variable *g_feed_value = program_.scope->Var("col");
  auto feed_tensor = g_feed_value->GetMutable<framework::Tensor>();

  return {};
}

template class Executor<CPU, Precision::FP32>;

朔-望's avatar
朔-望 已提交
421
}  // namespace paddle_mobile