benchmark.cc 7.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
J
juncaipeng 已提交
16 17 18
#include <sys/time.h>
#include <time.h>
#include <algorithm>
Y
Yan Chunwei 已提交
19 20
#include <cstdio>
#include <fstream>
J
juncaipeng 已提交
21 22
#include <iomanip>
#include <numeric>
Y
Yan Chunwei 已提交
23 24 25
#include <string>
#include <vector>
#include "lite/api/paddle_api.h"
J
juncaipeng 已提交
26 27 28
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
29
#include "lite/core/device_info.h"
Y
Yan Chunwei 已提交
30 31 32
#include "lite/utils/cp_logging.h"
#include "lite/utils/string.h"

J
juncaipeng 已提交
33
DEFINE_string(model_dir, "", "model dir");
Y
Yan Chunwei 已提交
34 35
DEFINE_string(input_shape,
              "1,3,224,224",
J
juncaipeng 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
              "set input shapes according to the model, "
              "separated by colon and comma, "
              "such as 1,3,244,244:1,3,300,300.");
DEFINE_int32(warmup, 0, "warmup times");
DEFINE_int32(repeats, 1, "repeats times");
DEFINE_int32(power_mode,
             3,
             "arm power mode: "
             "0 for big cluster, "
             "1 for little cluster, "
             "2 for all cores, "
             "3 for no bind");
DEFINE_int32(threads, 1, "threads num");
DEFINE_string(result_filename,
              "result.txt",
              "save benchmark "
              "result to the file");
J
juncaipeng 已提交
53 54
DEFINE_bool(run_model_optimize,
            false,
J
juncaipeng 已提交
55 56 57 58 59 60
            "if set true, apply model_optimize_tool to "
            "model and use optimized model to test. ");
DEFINE_bool(is_quantized_model,
            false,
            "if set true, "
            "test the performance of the quantized model. ");
Y
Yan Chunwei 已提交
61 62 63 64

namespace paddle {
namespace lite_api {

J
juncaipeng 已提交
65 66 67 68 69 70
inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

Y
Yan Chunwei 已提交
71 72 73 74 75
void OutputOptModel(const std::string& load_model_dir,
                    const std::string& save_optimized_model_dir,
                    const std::vector<std::vector<int64_t>>& input_shapes) {
  lite_api::CxxConfig config;
  config.set_model_dir(load_model_dir);
76 77 78
  std::vector<Place> vaild_places = {
      Place{TARGET(kARM), PRECISION(kFloat)},
  };
79 80 81 82 83
  if (FLAGS_is_quantized_model) {
    vaild_places.insert(vaild_places.begin(),
                        Place{TARGET(kARM), PRECISION(kInt8)});
  }
  config.set_valid_places(vaild_places);
Y
Yan Chunwei 已提交
84 85 86 87 88 89
  auto predictor = lite_api::CreatePaddlePredictor(config);

  int ret = system(
      paddle::lite::string_format("rm -rf %s", save_optimized_model_dir.c_str())
          .c_str());
  if (ret == 0) {
J
juncaipeng 已提交
90
    LOG(INFO) << "Delete old optimized model " << save_optimized_model_dir;
Y
Yan Chunwei 已提交
91 92 93 94 95 96 97 98 99 100 101
  }
  predictor->SaveOptimizedModel(save_optimized_model_dir,
                                LiteModelType::kNaiveBuffer);
  LOG(INFO) << "Load model from " << load_model_dir;
  LOG(INFO) << "Save optimized model to " << save_optimized_model_dir;
}

#ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
void Run(const std::vector<std::vector<int64_t>>& input_shapes,
         const std::string& model_dir,
         const std::string model_name) {
J
juncaipeng 已提交
102
  // set config and create predictor
103
  lite_api::MobileConfig config;
J
juncaipeng 已提交
104 105
  config.set_threads(FLAGS_threads);
  config.set_power_mode(static_cast<PowerMode>(FLAGS_power_mode));
Y
Yan Chunwei 已提交
106 107 108 109
  config.set_model_dir(model_dir);

  auto predictor = lite_api::CreatePaddlePredictor(config);

J
juncaipeng 已提交
110
  // set input
Y
Yan Chunwei 已提交
111 112 113 114 115
  for (int j = 0; j < input_shapes.size(); ++j) {
    auto input_tensor = predictor->GetInput(j);
    input_tensor->Resize(input_shapes[j]);
    auto input_data = input_tensor->mutable_data<float>();
    int input_num = 1;
J
juncaipeng 已提交
116
    for (size_t i = 0; i < input_shapes[j].size(); ++i) {
Y
Yan Chunwei 已提交
117 118 119 120 121 122 123
      input_num *= input_shapes[j][i];
    }
    for (int i = 0; i < input_num; ++i) {
      input_data[i] = 1.f;
    }
  }

J
juncaipeng 已提交
124 125
  // warmup
  for (int i = 0; i < FLAGS_warmup; ++i) {
Y
Yan Chunwei 已提交
126 127 128
    predictor->Run();
  }

J
juncaipeng 已提交
129 130 131 132
  // run
  std::vector<float> perf_vct;
  for (int i = 0; i < FLAGS_repeats; ++i) {
    auto start = GetCurrentUS();
Y
Yan Chunwei 已提交
133
    predictor->Run();
J
juncaipeng 已提交
134 135
    auto end = GetCurrentUS();
    perf_vct.push_back((end - start) / 1000.0);
Y
Yan Chunwei 已提交
136
  }
J
juncaipeng 已提交
137 138 139 140 141 142 143 144 145 146
  std::sort(perf_vct.begin(), perf_vct.end());
  float min_res = perf_vct.back();
  float max_res = perf_vct.front();
  float total_res = accumulate(perf_vct.begin(), perf_vct.end(), 0.0);
  float avg_res = total_res / FLAGS_repeats;

  // save result
  std::ofstream ofs(FLAGS_result_filename, std::ios::app);
  if (!ofs.is_open()) {
    LOG(FATAL) << "open result file failed";
Y
Yan Chunwei 已提交
147
  }
J
juncaipeng 已提交
148 149 150 151 152 153
  ofs.precision(5);
  ofs << std::setw(20) << std::fixed << std::left << model_name;
  ofs << "min = " << std::setw(12) << min_res;
  ofs << "max = " << std::setw(12) << max_res;
  ofs << "average = " << std::setw(12) << avg_res;
  ofs << std::endl;
J
juncaipeng 已提交
154
  ofs.close();
Y
Yan Chunwei 已提交
155 156 157 158 159 160 161 162 163
}
#endif

}  // namespace lite_api
}  // namespace paddle

int main(int argc, char** argv) {
  gflags::ParseCommandLineFlags(&argc, &argv, true);
  if (FLAGS_model_dir == "" || FLAGS_result_filename == "") {
J
juncaipeng 已提交
164
    LOG(INFO) << "please run ./benchmark_bin --help to obtain usage.";
Y
Yan Chunwei 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    exit(0);
  }

  std::size_t found = FLAGS_model_dir.find_last_of("/");
  std::string model_name = FLAGS_model_dir.substr(found + 1);
  std::string save_optimized_model_dir = FLAGS_model_dir + "opt2";

  auto split_string =
      [](const std::string& str_in) -> std::vector<std::string> {
    std::vector<std::string> str_out;
    std::string tmp_str = str_in;
    while (!tmp_str.empty()) {
      size_t next_offset = tmp_str.find(":");
      str_out.push_back(tmp_str.substr(0, next_offset));
      if (next_offset == std::string::npos) {
        break;
      } else {
        tmp_str = tmp_str.substr(next_offset + 1);
      }
    }
    return str_out;
  };

  auto get_shape = [](const std::string& str_shape) -> std::vector<int64_t> {
    std::vector<int64_t> shape;
    std::string tmp_str = str_shape;
    while (!tmp_str.empty()) {
      int dim = atoi(tmp_str.data());
      shape.push_back(dim);
      size_t next_offset = tmp_str.find(",");
      if (next_offset == std::string::npos) {
        break;
      } else {
        tmp_str = tmp_str.substr(next_offset + 1);
      }
    }
    return shape;
  };

  std::vector<std::string> str_input_shapes = split_string(FLAGS_input_shape);
  std::vector<std::vector<int64_t>> input_shapes;
J
juncaipeng 已提交
206
  for (size_t i = 0; i < str_input_shapes.size(); ++i) {
Y
Yan Chunwei 已提交
207 208 209
    input_shapes.push_back(get_shape(str_input_shapes[i]));
  }

J
juncaipeng 已提交
210
  // Output optimized model if needed
J
juncaipeng 已提交
211 212 213 214
  if (FLAGS_run_model_optimize) {
    paddle::lite_api::OutputOptModel(
        FLAGS_model_dir, save_optimized_model_dir, input_shapes);
  }
Y
Yan Chunwei 已提交
215 216 217

#ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
  // Run inference using optimized model
J
juncaipeng 已提交
218 219
  std::string run_model_dir =
      FLAGS_run_model_optimize ? save_optimized_model_dir : FLAGS_model_dir;
J
juncaipeng 已提交
220
  paddle::lite_api::Run(input_shapes, run_model_dir, model_name);
Y
Yan Chunwei 已提交
221 222 223
#endif
  return 0;
}