conv_add_relu_kernel.cpp 3.9 KB
Newer Older
Z
zhangyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVADDRELU_OP

#include "operators/kernel/conv_add_relu_kernel.h"

namespace paddle_mobile {
namespace operators {

template <>
N
nhzlx 已提交
23
bool ConvAddReluKernel<FPGA, float>::Init(FusionConvAddReluParam<FPGA> *param) {
Z
zhangyang 已提交
24
  bool relu_enabled = true;
Z
zhangyang 已提交
25
  Tensor *input = const_cast<Tensor *>(param->Input());
26
  auto input_ptr = input->data<float>();
Z
zhangyang 已提交
27 28
  const Tensor *bias = param->Bias();
  auto bias_ptr = bias->data<float>();
Z
zhangyang 已提交
29
  auto *filter = const_cast<Tensor *>(param->Filter());
Z
zhangyang 已提交
30 31
  Tensor *out = param->Output();

Z
zhangyang 已提交
32 33 34
  PADDLE_MOBILE_ENFORCE(out->dims()[1] == bias->dims()[0],
                        "Output channel should be equal to bias number");
  int channel = out->dims()[1];
Z
zhangyang 已提交
35
  auto *bs_ptr = (float *)fpga::fpga_malloc(2 * channel * sizeof(float));
Z
zhangyang 已提交
36
  for (int i = 0; i < channel; i++) {
Z
zhangyang 已提交
37 38
    bs_ptr[i + channel] = 1;
    bs_ptr[i] = bias_ptr[i];
Z
zhangyang 已提交
39 40
  }

Z
zhangyang 已提交
41 42
  float max_value = fpga::filter_find_max(filter);
  fpga::format_filter(filter, max_value, param->Groups());
43
  auto filter_ptr = filter->data<float>();
Z
zhangyang 已提交
44

Z
zhangyang 已提交
45 46 47 48 49
  int element_num_per_div =
      fpga::get_element_num_per_div(filter, param->Groups());
  fpga::format_bias_scale_array(&bs_ptr, element_num_per_div, channel);

  fpga::format_ofm(out);
50
  auto out_ptr = out->mutable_data<float>();
Z
zhangyang 已提交
51

Z
zhangyang 已提交
52 53 54 55 56
  fpga::WrapperConvArgs convArgs;
  convArgs.group_num = (uint32_t)param->Groups();
  convArgs.split_num = (uint32_t)fpga::get_plit_num(filter);
  convArgs.filter_num = (uint32_t)filter->dims()[0];
  convArgs.output.address = out_ptr;
Z
zhangyang 已提交
57
  convArgs.output.scale_address = out->scale;
Z
zhangyang 已提交
58 59
  convArgs.args = (fpga::ConvArgs *)fpga::fpga_malloc(convArgs.split_num *
                                                      sizeof(fpga::ConvArgs));
Z
zhangyang 已提交
60
  param->SetFpgaArgs(convArgs);
Z
zhangyang 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

  int element_num = fpga::get_aligned_filter_element_num(
      filter->dims()[1] * filter->dims()[2] * filter->dims()[3]);

  int n = convArgs.split_num;
  for (int i = 0; i < n; i++) {
    convArgs.args[i].relu_enabled = relu_enabled;
    convArgs.args[i].group_num = (uint32_t)param->Groups();
    convArgs.args[i].kernel.stride_h = (uint32_t)param->Strides()[0];
    convArgs.args[i].kernel.stride_w = (uint32_t)param->Strides()[1];
    convArgs.args[i].kernel.height = (uint32_t)filter->dims()[2];
    convArgs.args[i].kernel.width = (uint32_t)filter->dims()[3];
    convArgs.args[i].image.address = input_ptr;
    convArgs.args[i].image.channels = (uint32_t)input->dims()[1];
    convArgs.args[i].image.height = (uint32_t)input->dims()[2];
    convArgs.args[i].image.width = (uint32_t)input->dims()[3];
    convArgs.args[i].image.pad_height = (uint32_t)param->Paddings()[0];
    convArgs.args[i].image.pad_width = (uint32_t)param->Paddings()[1];
    convArgs.args[i].filter_address = &((int8_t *)filter_ptr)[i * element_num];
    convArgs.args[i].sb_address = &((int8_t *)bs_ptr)[i * element_num];
    convArgs.args[i].filter_num =
        (uint32_t)(i == n - 1 ? fpga::get_aligned_filter_num(
                                    channel - (n - 1) * element_num_per_div)
                              : element_num_per_div);
    convArgs.args[i].image.scale_address =
        (float *)fpga::fpga_malloc(2 * sizeof(float));
  }
Z
zhangyang 已提交
88 89 90 91
  return true;
}

template <>
Z
zhangyang 已提交
92
void ConvAddReluKernel<FPGA, float>::Compute(
N
nhzlx 已提交
93
    const FusionConvAddReluParam<FPGA> &param) const {
Z
zhangyang 已提交
94 95 96 97 98 99 100 101
  fpga::ComputeFpgaConv(param.FpgaArgs());
}
template class ConvAddReluKernel<FPGA, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif