conv_kernel.cpp 4.6 KB
Newer Older
Z
zhaojiaying01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14 15 16 17

#include "operators/kernel/conv_kernel.h"

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
18 19 20
namespace operators {

bool IsExpand(const std::vector<int64_t> &filter_dim,
朔-望's avatar
朔-望 已提交
21
              const std::vector<int> &strides, const std::vector<int> &paddings,
朔-望's avatar
朔-望 已提交
22
              const std::vector<int> &dilations) {
23 24 25 26 27 28 29 30
  bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true;
  for (size_t j = 0; j < strides.size(); ++j) {
    filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
    strides_1 = strides_1 && (strides[j] == 1);
    padding_0 = padding_0 && (paddings[j] == 0);
    dilation_1 = dilation_1 && (dilations[j] == 1);
  }
  return !(filter_1 && strides_1 && padding_0 && dilation_1);
朔-望's avatar
朔-望 已提交
31 32
}

朔-望's avatar
朔-望 已提交
33 34
template <>
void ConvKernel<CPU, float>::Compute(const ConvParam &param) const {
35 36 37 38 39
  LOG(kLOG_DEBUG) << param;

  const Tensor *input = param.Input();
  Tensor filter = *param.Filter();
  Tensor *output = param.Output();
Z
zhaojiaying01 已提交
40
  output->mutable_data<float>();
41 42 43 44 45 46

  int groups = param.Groups();
  std::vector<int> strides = param.Strides();
  std::vector<int> paddings = param.Paddings();
  std::vector<int> dilations = param.Dilations();

W
wangliu 已提交
47
//  DLOG << " compute end get Attrs " << strides[0];
48 49 50 51 52

  const int batch_size = static_cast<int>(input->dims()[0]);

  std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));

W
wangliu 已提交
53
  std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  size_t data_dim = filter_shape_vec.size() - 2;
  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
  col_shape_vec[0] = input->dims()[1] / groups;
  for (size_t j = 0; j < data_dim; ++j) {
    col_shape_vec[j + 1] = filter_shape_vec[j + 2];
    col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
  }
  framework::DDim col_shape(framework::make_ddim(col_shape_vec));

  framework::DDim col_matrix_shape =
      framework::flatten_to_2d(col_shape, data_dim + 1);

  bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
  Tensor col;
  Tensor col_matrix;
  if (is_expand) {
    col.mutable_data<float>(col_shape);
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);
  }

  framework::DDim input_shape = framework::slice_ddim(
      input->dims(), 1, static_cast<int>(input->dims().size()));

  framework::DDim filter_matrix_shape = {filter.dims()[0],
                                         filter.numel() / filter.dims()[0]};
  filter.Resize(filter_matrix_shape);
  framework::DDim output_matrix_shape = {
      output->dims()[1],
      output->numel() / (output->dims()[0] * output->dims()[1])};

  // convolution operator: im2col(or vol2col) + gemm
  int in_step = static_cast<int>(input->dims()[1]) / groups;
  int out_step = static_cast<int>(output->dims()[1]) / groups;

  math::Vol2ColFunctor<CPU, float> vol2col;
  math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col;

  for (int i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
    Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);

    for (int g = 0; g < groups; g++) {
      Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);

      if (!is_expand) {
        col.ShareDataWith(in_slice);
朔-望's avatar
朔-望 已提交
101 102
        col_matrix.ShareDataWith(col);
        col_matrix.Resize(col_matrix_shape);
103 104 105 106 107 108 109 110 111 112 113 114 115 116
      } else if (data_dim == 2U) {
        // im2col
        im2col(in_slice, dilations, strides,
               std::vector<int>{paddings[0], paddings[1], paddings[0],
                                paddings[1]},
               &col);
      } else if (data_dim == 3U) {
        // vol2col
        vol2col(in_slice, dilations, strides, paddings, &col);
      }

      // gemm
      Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
      Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
Z
zhaojiaying01 已提交
117 118 119
      math::matmul<float>(filter_slice, false, col_matrix, false,
                          static_cast<float>(1), &out_slice,
                          static_cast<float>(0));
朔-望's avatar
朔-望 已提交
120
    }
121
  }
朔-望's avatar
朔-望 已提交
122 123
}

124
template class ConvKernel<CPU, float>;
朔-望's avatar
朔-望 已提交
125

朔-望's avatar
朔-望 已提交
126 127
}  // namespace operators
}  // namespace paddle_mobile