device_info.h 7.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <cstdarg>
#include <string>
#include <vector>
#include "lite/core/tensor.h"
#include "lite/utils/cp_logging.h"
22 23 24
#ifdef LITE_WITH_MLU
#include "lite/backends/mlu/mlu_utils.h"
#endif
Y
Yan Chunwei 已提交
25 26 27 28

namespace paddle {
namespace lite {

29
#if ((defined LITE_WITH_ARM) || (defined LITE_WITH_MLU))
Y
Yan Chunwei 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

typedef enum {
  kAPPLE = 0,
  kA53 = 53,
  kA55 = 55,
  kA57 = 57,
  kA72 = 72,
  kA73 = 73,
  kA75 = 75,
  kA76 = 76,
  kARMArch_UNKOWN = -1
} ARMArch;

class DeviceInfo {
 public:
  static DeviceInfo& Global() {
    static auto* x = new DeviceInfo;
    return *x;
  }

  static int Init() {
    static int ret = Global().Setup();
    return ret;
  }

  int Setup();

57
  void SetRunMode(lite_api::PowerMode mode, int thread_num);
58 59 60 61 62 63 64 65 66 67 68 69 70 71
#ifdef LITE_WITH_MLU
  void SetMLURunMode(lite_api::MLUCoreVersion core_version,
                     int core_number,
                     bool use_first_conv,
                     const std::vector<float>& mean_vec,
                     const std::vector<float>& std_vec,
                     DataLayoutType input_layout);
  cnmlCoreVersion_t MLUCoreVersion();
  int MLUCoreNumber();
  bool UseFirstConv();
  const std::vector<float>& MeanVec() const;
  const std::vector<float>& StdVec() const;
  DataLayoutType InputLayout() const;
#endif
Y
Yan Chunwei 已提交
72 73 74
  void SetCache(int l1size, int l2size, int l3size);
  void SetArch(ARMArch arch) { arch_ = arch; }

75
  lite_api::PowerMode mode() const { return mode_; }
Y
Yan Chunwei 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  int threads() const { return active_ids_.size(); }
  ARMArch arch() const { return arch_; }
  int l1_cache_size() const { return L1_cache_[active_ids_[0]]; }
  int l2_cache_size() const { return L2_cache_[active_ids_[0]]; }
  int l3_cache_size() const { return L3_cache_[active_ids_[0]]; }
  int llc_size() const {
    auto size = L3_cache_[active_ids_[0]] > 0 ? L3_cache_[active_ids_[0]]
                                              : L2_cache_[active_ids_[0]];
    return size > 0 ? size : 512 * 1024;
  }
  bool has_dot() const { return dot_[active_ids_[0]]; }
  bool has_fp16() const { return fp16_[active_ids_[0]]; }

  template <typename T>
  T* workspace_data() {
    return reinterpret_cast<T*>(workspace_.mutable_data<int8_t>());
  }
93
  bool ExtendWorkspace(size_t size);
Y
Yan Chunwei 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

 private:
  int core_num_;
  std::vector<int> max_freqs_;
  std::vector<int> min_freqs_;
  std::string dev_name_;

  std::vector<int> L1_cache_;
  std::vector<int> L2_cache_;
  std::vector<int> L3_cache_;
  std::vector<int> core_ids_;
  std::vector<int> big_core_ids_;
  std::vector<int> little_core_ids_;
  std::vector<int> cluster_ids_;
  std::vector<ARMArch> archs_;
  std::vector<bool> fp32_;
  std::vector<bool> fp16_;
  std::vector<bool> dot_;

  // LITE_POWER_HIGH stands for using big cores,
  // LITE_POWER_LOW stands for using small core,
  // LITE_POWER_FULL stands for using all cores
T
TianXiaogang 已提交
116 117 118 119 120 121
  static thread_local lite_api::PowerMode mode_;
  static thread_local ARMArch arch_;
  static thread_local int mem_size_;
  static thread_local std::vector<int> active_ids_;
  static thread_local TensorLite workspace_;
  static thread_local int64_t count_;
Y
Yan Chunwei 已提交
122

123 124 125 126 127 128 129 130 131
#ifdef LITE_WITH_MLU
  static thread_local cnmlCoreVersion_t mlu_core_version_;
  static thread_local int mlu_core_number_;
  static thread_local bool use_first_conv_;
  static thread_local std::vector<float> mean_vec_;
  static thread_local std::vector<float> std_vec_;
  static thread_local DataLayoutType input_layout_;
#endif

Y
Yan Chunwei 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
  void SetDotInfo(int argc, ...);
  void SetFP16Info(int argc, ...);
  void SetFP32Info(int argc, ...);
  void SetCacheInfo(int cache_id, int argc, ...);
  void SetArchInfo(int argc, ...);
  bool SetCPUInfoByName();
  void SetCPUInfoByProb();
  void RequestPowerFullMode(int thread_num);
  void RequestPowerHighMode(int thread_num);
  void RequestPowerLowMode(int thread_num);
  void RequestPowerNoBindMode(int thread_num);
  void RequestPowerRandHighMode(int shift_num, int thread_num);
  void RequestPowerRandLowMode(int shift_num, int thread_num);

  DeviceInfo() = default;
};
#endif  // LITE_WITH_ARM

150 151 152 153 154 155 156 157 158 159 160 161 162
template <TargetType Type>
class Device;

template <TargetType Type>
class Env {
 public:
  typedef TargetWrapper<Type> API;
  typedef std::vector<Device<Type>> Devs;
  static Devs& Global() {
    static Devs* devs = new Devs();
    return *devs;
  }
  static void Init(int max_stream = 4) {
163 164 165
#ifdef LITE_WITH_MLU
    CNRT_CALL(cnrtInit(0));
#endif
166 167 168 169 170 171 172 173
    Devs& devs = Global();
    if (devs.size() > 0) {
      return;
    }
    int count = 0;
    // Get device count
    count = API::num_devices();
    if (count == 0) {
174
      LOG(INFO) << "No " << TargetToStr(Type) << " device(s) found!";
175 176 177 178 179 180 181 182 183 184 185 186 187
    } else {
      LOG(INFO) << "Found " << count << " device(s)";
    }
    // create all device
    for (int i = 0; i < count; i++) {
      auto dev = Device<Type>(i, max_stream);
      dev.Init();
      devs.push_back(dev);
    }
    LOG(INFO) << "dev size = " << devs.size();
  }
};

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
#ifdef LITE_WITH_MLU
void SetMluDevice(int device_id);

template <>
class Device<TARGET(kMLU)> {
 public:
  Device(int dev_id, int max_queue = 1) : idx_(dev_id), max_queue_(max_queue) {}
  void Init();

  int id() { return idx_; }
  int max_queue() { return max_queue_; }
  void SetId(int idx) { idx_ = idx; }
  std::string name() { return "MLU"; }
  int core_num() { return 16; }
  float max_memory() { return 16 * 1024; }
  std::vector<cnrtQueue_t> io_queues() { return io_queue_; }
  std::vector<cnrtQueue_t> exec_queues() { return exec_queue_; }

 private:
  void CreateQueue();
  void GetInfo();

 private:
  int idx_{0};
  int max_queue_;
  std::string device_name_;
  float max_memory_;

  std::vector<cnrtQueue_t> io_queue_;
  std::vector<cnrtQueue_t> exec_queue_;
};

template class Env<TARGET(kMLU)>;
#endif  // LITE_WITH_MLU

223 224 225 226 227 228 229 230 231 232
#ifdef LITE_WITH_CUDA
template <>
class Device<TARGET(kCUDA)> {
 public:
  Device(int dev_id, int max_stream = 1)
      : idx_(dev_id), max_stream_(max_stream) {}
  void Init();

  int id() { return idx_; }
  int max_stream() { return max_stream_; }
233
  void SetId(int idx) { idx_ = idx; }
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
  std::string name() { return device_prop_.name; }
  int core_num() { return device_prop_.multiProcessorCount; }
  float max_memory() { return device_prop_.totalGlobalMem / 1048576.; }
  std::vector<cudaStream_t> exec_streams() { return exec_stream_; }
  std::vector<cudaStream_t> io_streams() { return io_stream_; }

  int sm_version() { return sm_version_; }
  bool has_fp16() { return has_fp16_; }
  bool has_int8() { return has_fp16_; }
  bool has_hmma() { return has_fp16_; }
  bool has_imma() { return has_fp16_; }
  int runtime_version() { return runtime_version_; }

 private:
  void CreateStream();
  void GetInfo();

 private:
  int idx_{0};
253
  int max_stream_;
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
  cudaDeviceProp device_prop_;
  std::string device_name_;
  float max_memory_;

  int sm_version_;
  bool has_fp16_;
  bool has_int8_;
  bool has_hmma_;
  bool has_imma_;
  int runtime_version_;
  std::vector<cudaStream_t> exec_stream_;
  std::vector<cudaStream_t> io_stream_;
};

template class Env<TARGET(kCUDA)>;
#endif

Y
Yan Chunwei 已提交
271 272
}  // namespace lite
}  // namespace paddle