light_api.cc 7.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/light_api.h"
16
#include <algorithm>
Y
Yan Chunwei 已提交
17 18 19 20 21

namespace paddle {
namespace lite {

void LightPredictor::Build(const std::string& model_dir,
22 23 24 25
                           const std::string& model_buffer,
                           const std::string& param_buffer,
                           lite_api::LiteModelType model_type,
                           bool model_from_memory) {
Y
Yan Chunwei 已提交
26 27 28
  switch (model_type) {
#ifndef LITE_ON_TINY_PUBLISH
    case lite_api::LiteModelType::kProtobuf:
29
      LoadModelPb(model_dir, "", "", scope_.get(), &cpp_program_desc_);
Y
Yan Chunwei 已提交
30 31
      break;
#endif
32 33 34
    case lite_api::LiteModelType::kNaiveBuffer: {
      if (model_from_memory) {
        LoadModelNaiveFromMemory(
35
            model_buffer, param_buffer, scope_.get(), &cpp_program_desc_);
36
      } else {
37
        LoadModelNaive(model_dir, scope_.get(), &cpp_program_desc_);
38
      }
Y
Yan Chunwei 已提交
39
      break;
40
    }
Y
Yan Chunwei 已提交
41 42 43
    default:
      LOG(FATAL) << "Unknown model type";
  }
J
juncaipeng 已提交
44 45

  DequantizeWeight();
46
  BuildRuntimeProgram(cpp_program_desc_);
47
  PrepareFeedFetch();
Y
Yan Chunwei 已提交
48 49 50
}

Tensor* LightPredictor::GetInput(size_t offset) {
51 52 53 54 55 56 57
  CHECK(input_names_.size() > offset)
      << "The network has " << input_names_.size() << " inputs"
      << ", the offset should be less than this.";
  auto* in_var = program_->exec_scope()->FindVar(input_names_[offset]);
  CHECK(in_var) << "no fatch variable " << input_names_[offset]
                << " in exec_scope";
  return in_var->GetMutable<lite::Tensor>();
Y
Yan Chunwei 已提交
58 59
}

60 61
// get input by name
Tensor* LightPredictor::GetInputByName(const std::string& name) {
62 63
  auto element = std::find(input_names_.begin(), input_names_.end(), name);
  if (element == input_names_.end()) {
64 65 66 67 68
    LOG(ERROR) << "Model do not have input named with: [" << name
               << "], model's inputs include:";
    for (int i = 0; i < input_names_.size(); i++) {
      LOG(ERROR) << "[" << input_names_[i] << "]";
    }
69
    return nullptr;
70
  } else {
71 72
    int position = std::distance(input_names_.begin(), element);
    return GetInput(position);
73 74 75
  }
}

Y
Yan Chunwei 已提交
76
const Tensor* LightPredictor::GetOutput(size_t offset) {
77 78 79 80 81 82 83
  CHECK(output_names_.size() > offset)
      << "The network has " << output_names_.size() << " outputs"
      << ", the offset should be less than this.";
  auto* out_var = program_->exec_scope()->FindVar(output_names_.at(offset));
  CHECK(out_var) << "no fatch variable " << output_names_.at(offset)
                 << " in exec_scope";
  return out_var->GetMutable<lite::Tensor>();
Y
Yan Chunwei 已提交
84
}
85
// get inputs names
S
sangoly 已提交
86
std::vector<std::string> LightPredictor::GetInputNames() {
87
  return input_names_;
88 89
}
// get outputnames
S
sangoly 已提交
90
std::vector<std::string> LightPredictor::GetOutputNames() {
91
  return output_names_;
92 93 94 95
}
// append the names of inputs and outputs into input_names_ and output_names_
void LightPredictor::PrepareFeedFetch() {
  auto current_block = cpp_program_desc_.GetBlock<cpp::BlockDesc>(0);
96 97
  std::vector<cpp::OpDesc*> feeds;
  std::vector<cpp::OpDesc*> fetchs;
98 99 100
  for (int i = 0; i < current_block->OpsSize(); i++) {
    auto op = current_block->GetOp<cpp::OpDesc>(i);
    if (op->Type() == "feed") {
101
      feeds.push_back(op);
102
    } else if (op->Type() == "fetch") {
103
      fetchs.push_back(op);
104 105
    }
  }
106 107 108 109 110 111 112 113 114 115
  input_names_.resize(feeds.size());
  output_names_.resize(fetchs.size());
  for (int i = 0; i < feeds.size(); i++) {
    input_names_[feeds[i]->GetAttr<int>("col")] =
        feeds[i]->Output("Out").front();
  }
  for (int i = 0; i < fetchs.size(); i++) {
    output_names_[fetchs[i]->GetAttr<int>("col")] =
        fetchs[i]->Input("X").front();
  }
116
}
Y
Yan Chunwei 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

void LightPredictor::BuildRuntimeProgram(const cpp::ProgramDesc& prog) {
  std::vector<Instruction> insts;
  // 1. Create op first
  Program program(prog, scope_, {});

  // 2. Create Instructs

  // Create the kernels of the target places, and filter out the specific
  // kernel with the target alias.
  for (auto& op : program.ops()) {
    auto kernel_type = op->op_info()->GetAttr<std::string>(kKernelTypeAttr);
    std::string op_type, alias;
    Place place;
    KernelBase::ParseKernelType(kernel_type, &op_type, &alias, &place);
    auto kernels = op->CreateKernels({place});
    // filter out a kernel
    auto it = std::find_if(
        kernels.begin(), kernels.end(), [&](std::unique_ptr<KernelBase>& it) {
          return it->alias() == alias;
        });
    CHECK(it != kernels.end());
    (*it)->SetContext(ContextScheduler::Global().NewContext((*it)->target()));
140

Y
Yan Chunwei 已提交
141 142 143
    insts.emplace_back(op, std::move(*it));
  }
  program_.reset(new RuntimeProgram(std::move(insts)));
144

Y
Yan Chunwei 已提交
145 146 147 148
  CHECK(program.exec_scope());
  program_->set_exec_scope(program.exec_scope());
}

J
juncaipeng 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
void LightPredictor::DequantizeWeight() {
#define PROCESS_CONV2D_DATA()                                   \
  for (int64_t i = 0; i < h; ++i) {                             \
    for (int64_t j = 0; j < w; ++j) {                           \
      fp_data[i * w + j] = scale_list[i] * int_data[i * w + j]; \
    }                                                           \
  }

#define PROCESS_FC_DATA()                           \
  for (int i = 0; i < input_tensor->numel(); i++) { \
    *fp_data = scale_list[0] * (*int_data);         \
    ++fp_data;                                      \
    ++int_data;                                     \
  }

  Tensor tmp_tensor;
  CHECK(cpp_program_desc_.BlocksSize());
  auto* main_block = cpp_program_desc_.GetBlock<cpp::BlockDesc>(0);
  for (size_t k = 0; k < main_block->OpsSize(); ++k) {
    auto* op_desc = main_block->GetOp<cpp::OpDesc>(k);
    if (op_desc->HasAttr("quantize_weight_bits")) {  //  weight quantized op
      auto input_names = op_desc->input_vars();
      for (auto& input_name : input_names) {
        std::string input_scale_name = input_name + "_quant_scale";
        if (op_desc->HasAttr(input_scale_name)) {  // the input is quantized
          auto input_tensor =
              scope_->FindVar(input_name)->GetMutable<lite::Tensor>();
          tmp_tensor.CopyDataFrom(*input_tensor);
          auto scale_list =
              op_desc->GetAttr<std::vector<float>>(input_scale_name);
          int quantize_weight_bits =
              op_desc->GetAttr<int>("quantize_weight_bits");
          float* fp_data = input_tensor->mutable_data<float>();

          std::string op_type = op_desc->Type();
          if (op_type == "conv2d" || op_type == "depthwise_conv2d") {
            int64_t h = input_tensor->dims()[0];
            int64_t w = input_tensor->numel() / h;
            CHECK_EQ(scale_list.size(), h);
            if (quantize_weight_bits == 8) {
              const int8_t* int_data = tmp_tensor.data<int8_t>();
              PROCESS_CONV2D_DATA()
            } else {
              const int16_t* int_data = tmp_tensor.data<int16_t>();
              PROCESS_CONV2D_DATA()
            }
          } else if (op_type == "fc" || op_type == "mul") {
            if (quantize_weight_bits == 8) {
              const int8_t* int_data = tmp_tensor.data<int8_t>();
              PROCESS_FC_DATA()
            } else {
              const int16_t* int_data = tmp_tensor.data<int16_t>();
              PROCESS_FC_DATA()
            }
          }
        }
      }
    }
  }

#undef PROCESS_CONV2D_DATA
#undef PROCESS_FC_DATA
}

Y
Yan Chunwei 已提交
213 214
}  // namespace lite
}  // namespace paddle