layout_compute.h 4.9 KB
Newer Older
J
jackzhang235 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <Eigen/Core>
#include <string>
#include <vector>
#include "lite/backends/x86/math/math_function.h"
#include "lite/core/kernel.h"
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
#include "lite/operators/layout_op.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace mlu {

J
jackzhang235 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
template <paddle::lite_api::PrecisionType>
struct FPTypeTraits {};

template <>
struct FPTypeTraits<paddle::lite_api::PrecisionType::kFloat> {
  typedef float T;
};

template <>
struct FPTypeTraits<paddle::lite_api::PrecisionType::kFP16> {
  typedef paddle::lite::fluid::float16 T;
};

template <>
struct FPTypeTraits<paddle::lite_api::PrecisionType::kInt8> {
  typedef int8_t T;
};

J
jackzhang235 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
template <lite::TargetType Target, typename T>
inline void LayoutTransCompute(const int dim,
                               const lite::Context<Target>& context,
                               const lite::Tensor& in,
                               lite::Tensor* out,
                               const std::vector<int>& axis) {
  switch (dim) {
    case 2:
      paddle::lite::x86::math::Transpose<lite::TargetType::kX86, T, 2> trans2;
      trans2(context, in, out, axis);
      break;
    case 3:
      paddle::lite::x86::math::Transpose<lite::TargetType::kX86, T, 3> trans3;
      trans3(context, in, out, axis);
      break;
    case 4:
      paddle::lite::x86::math::Transpose<lite::TargetType::kX86, T, 4> trans4;
      trans4(context, in, out, axis);
      break;
    default:
      CHECK(0) << ("Unsupport dim in mlu layout");
  }
}

template <PrecisionType Precision>
class LayoutNchwToNhwcCompute
    : public KernelLite<TARGET(kMLU), Precision, DATALAYOUT(kNHWC)> {
 public:
  using param_t = operators::LayoutParam;

  void Run() override {
    auto& param = this->template Param<param_t>();
    auto* x = param.x;
    auto* out = param.y;
J
jackzhang235 已提交
84
    out->template mutable_data<typename FPTypeTraits<Precision>::T>();
J
jackzhang235 已提交
85 86 87
    auto x_dims = param.x->dims().size();
    auto& context = this->ctx_->template As<X86Context>();

88 89
    const auto origin_dims = out->dims().Vectorize();

J
jackzhang235 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    std::vector<int> axis;
    switch (x_dims) {
      case 2:
        axis = {0, 1};
        break;
      case 3:
        axis = {0, 2, 1};
        out->Resize(std::vector<int64_t>{
            out->dims()[0], out->dims()[2], out->dims()[1]});
        break;
      case 4:
        axis = {0, 2, 3, 1};
        out->Resize(std::vector<int64_t>{
            out->dims()[0], out->dims()[2], out->dims()[3], out->dims()[1]});
        break;
      default:
        CHECK(0) << "Unsupport dim in mlu layout nchw to nhwc";
    }

J
jackzhang235 已提交
109 110
    LayoutTransCompute<lite::TargetType::kX86,
                       typename FPTypeTraits<Precision>::T>(
J
jackzhang235 已提交
111
        x_dims, context, *x, out, axis);
112 113 114 115

    if (x_dims > 2) {
      out->Resize(origin_dims);
    }
J
jackzhang235 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
  }

  std::string doc() const override {
    return "Mlu layout transform nchw to nhwc";
  }
};

template <PrecisionType Precision>
class LayoutNhwcToNchwCompute
    : public KernelLite<TARGET(kMLU), Precision, DATALAYOUT(kNHWC)> {
 public:
  using param_t = operators::LayoutParam;

  void Run() override {
    auto& param = this->template Param<param_t>();
    auto* x = param.x;
    auto* out = param.y;
J
jackzhang235 已提交
133
    out->template mutable_data<typename FPTypeTraits<Precision>::T>();
J
jackzhang235 已提交
134 135 136
    auto x_dims = param.x->dims().size();
    auto& context = this->ctx_->template As<X86Context>();

137 138
    const auto origin_dims = out->dims().Vectorize();

J
jackzhang235 已提交
139 140 141 142 143 144 145 146
    std::vector<int> axis;
    switch (x_dims) {
      case 2:
        axis = {0, 1};
        break;
      case 3:
        out->Resize(std::vector<int64_t>{
            out->dims()[0], out->dims()[2], out->dims()[1]});
147
        axis = {0, 2, 1};
J
jackzhang235 已提交
148 149 150 151
        break;
      case 4:
        out->Resize(std::vector<int64_t>{
            out->dims()[0], out->dims()[3], out->dims()[1], out->dims()[2]});
152
        axis = {0, 3, 1, 2};
J
jackzhang235 已提交
153 154 155 156 157
        break;
      default:
        CHECK(0) << "Unsupport dim in mlu layout nhwc to nchw";
    }

J
jackzhang235 已提交
158 159
    LayoutTransCompute<lite::TargetType::kX86,
                       typename FPTypeTraits<Precision>::T>(
J
jackzhang235 已提交
160
        x_dims, context, *x, out, axis);
161 162 163 164

    if (x_dims > 2) {
      out->Resize(origin_dims);
    }
J
jackzhang235 已提交
165 166 167 168 169 170 171 172 173 174 175
  }

  std::string doc() const override {
    return "Mlu layout transform nhwc to nchw";
  }
};

}  // namespace mlu
}  // namespace kernels
}  // namespace lite
}  // namespace paddle