softmax.cpp 4.9 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wangliu 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

#include "operators/math/softmax.h"
#include "common/types.h"
#if __ARM_NEON
#include <algorithm>
#include "operators/math/math_func_neon.h"
#endif

namespace paddle_mobile {
namespace operators {
namespace math {
using framework::DDim;
using framework::Tensor;
template <typename T>
class SoftmaxFuntor<CPU, T> {
#if __ARM_NEON
  void sum(float *input, float *sumptr, int inner_size, int outter_size) {
    float32x4_t acc = vdupq_n_f32(0);
    float sum_ = 0;
    for (int i = 0; i < outter_size; ++i) {
      float *input_outer_ptr = input + i * inner_size;
      int nn = inner_size >> 2;
      int left = inner_size - (nn << 2);
      for (; nn > 0; nn--) {
        float32x4_t vec_input = vld1q_f32(input_outer_ptr);
        acc = vaddq_f32(acc, vec_input);
        input_outer_ptr += 4;
      }
      float32x2_t vsum_ = vadd_f32(vget_high_f32(acc), vget_low_f32(acc));
      sum_ = vget_lane_f32(vsum_, 0) + vget_lane_f32(vsum_, 1);
      for (; left > 0; left--) {
        sum_ += *input_outer_ptr;
        input_outer_ptr++;
      }
    }
    for (int j = 0; j < inner_size * outter_size; ++j) {
      sumptr[j] = sum_;
    }
  }

  void SoftmaxCacl(const Tensor *X, Tensor *Y) {
    const float *input = X->data<float>();
    const DDim &dDim = X->dims();
    int axis_index = 1;
    if (dDim.size() < 4) {
      axis_index = 0;
    }
    DDim outer_ddim =
        paddle_mobile::framework::slice_ddim(dDim, 0, axis_index + 1);
    DDim inner_ddim =
        paddle_mobile::framework::slice_ddim(dDim, axis_index + 1, dDim.size());
    int out_size = paddle_mobile::framework::product(outer_ddim);
    int inner_size = paddle_mobile::framework::product(inner_ddim);
    auto *max_ptr = new float[inner_size * out_size];
    // max
    for (int j = 0; j < out_size; ++j) {
      const float *input_outer_ptr = input + j * inner_size;
      float *max_outer_ptr = max_ptr + j * inner_size;
      float max_ = 0;
      for (int i = 0; i < inner_size; ++i) {
        const float *input_inner_ptr = input_outer_ptr + i;
        max_ = std::max(max_, input_inner_ptr[0]);
      }
      for (int k = 0; k < inner_size; ++k) {
        max_outer_ptr[k] = max_;
      }
    }
    // exp(value - max)
    float *exp_sub_max = new float[inner_size * out_size];
    float *exp_sub_max_ptr = &exp_sub_max[0];
    for (int l = 0; l < out_size; ++l) {
      const float *input_outer_ptr = input + l * inner_size;
      float *max_outer_ptr = max_ptr + l * inner_size;
      int nn = inner_size >> 2;
      int left = inner_size - (nn << 2);
      for (; nn > 0; nn--) {
        float32x4_t vec_input = vld1q_f32(input_outer_ptr);
        float32x4_t vec_max = vld1q_f32(max_outer_ptr);
        float32x4_t vec_sub = vsubq_f32(vec_input, vec_max);
        float32x4_t vec_exp = exp_ps(vec_sub);
        vst1q_f32(exp_sub_max_ptr, vec_exp);
        input_outer_ptr += 4;
        max_outer_ptr += 4;
        exp_sub_max_ptr += 4;
      }
      for (; left > 0; left--) {
        *exp_sub_max_ptr = expf(*input_outer_ptr - *max_outer_ptr);

        input_outer_ptr++;
        max_outer_ptr++;
        exp_sub_max_ptr++;
      }
    }
    float *sumptr = new float[inner_size * out_size];
    // sum exp
    sum(exp_sub_max, sumptr, inner_size, out_size);
    // div
    auto *out_ptr = static_cast<float *>(Y->mutable_data());
    for (int l = 0; l < out_size; ++l) {
      const float *input_outer_ptr = exp_sub_max + l * inner_size;
      float *output_outer_ptr = out_ptr + l * inner_size;
      float *sum_outer_ptr = sumptr + l * inner_size;
      int nn = inner_size >> 2;
      int left = inner_size - (nn << 2);
      for (; nn > 0; nn--) {
        float32x4_t vec_input = vld1q_f32(input_outer_ptr);
        float32x4_t vec_sum = vld1q_f32(sum_outer_ptr);
        float32x4_t vec_div = div_ps(vec_input, vec_sum);
        vst1q_f32(output_outer_ptr, vec_div);
        input_outer_ptr += 4;
        output_outer_ptr += 4;
        sum_outer_ptr += 4;
      }
      for (; left > 0; left--) {
        *output_outer_ptr = (*input_outer_ptr) / (*sum_outer_ptr);
        input_outer_ptr++;
        output_outer_ptr++;
        sum_outer_ptr++;
      }
    }
  }
#endif  // ARM_NEON

 public:
  void operator()(const framework::Tensor *X, framework::Tensor *Y) {
#if __ARM_NEON
    SoftmaxCacl(X, Y);
#endif
  }
};

template class SoftmaxFuntor<CPU, float>;

}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile