op_params.h 49.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <memory>
Y
Yan Chunwei 已提交
17
#include <string>
18
#include <utility>
Y
Yan Chunwei 已提交
19
#include <vector>
20
#include "lite/api/paddle_place.h"
Y
Yan Chunwei 已提交
21 22
#include "lite/core/scope.h"
#include "lite/core/tensor.h"
23
#include "lite/core/types.h"
24 25
#include "lite/model_parser/base/apis.h"
#include "lite/model_parser/cpp_desc.h"
Y
Yan Chunwei 已提交
26 27 28 29 30 31 32 33 34
#include "lite/utils/all.h"
/*
 * This file contains all the argument parameter data structure for operators.
 */

namespace paddle {
namespace lite {
namespace operators {

35 36
struct ParamBase {
 public:
37 38 39 40 41
  virtual ~ParamBase() {}
  virtual const std::vector<const Tensor*>* input_tensor_ptrs() {
    return nullptr;
  }
  virtual std::vector<Tensor*>* output_tensor_ptrs() { return nullptr; }
42 43 44 45 46 47

 protected:
  std::shared_ptr<std::vector<const Tensor*>> input_tensor_ptrs_cache_{nullptr};
  std::shared_ptr<std::vector<Tensor*>> output_tensor_ptrs_cache_{nullptr};
};

Y
Yan Chunwei 已提交
48 49 50
using param_t = Any;
#define WITH_INT8_CONFIG             \
  bool enable_int8{false};           \
51
  float input_scale{1.0f};           \
Y
Yan Chunwei 已提交
52
  std::vector<float> weight_scale{}; \
53
  float output_scale{1.0f};          \
54
  int bit_length{8};
Y
Yan Chunwei 已提交
55 56

/// ----------------------- Functional operators ------------------------------
57
struct FeedParam : ParamBase {
Y
Yan Chunwei 已提交
58 59 60 61 62
  std::vector<lite::Tensor>* feed_list{};
  lite::Tensor* out{};
  int col;
};

63
struct FetchParam : ParamBase {
Y
Yan Chunwei 已提交
64 65 66 67 68 69
  const lite::Tensor* input{};
  std::vector<lite::Tensor>* fetch_list{};
  int col;
};

// Helper op for lite framework
70
struct IoCopyParam : ParamBase {
Y
Yan Chunwei 已提交
71 72
  const lite::Tensor* x{};
  lite::Tensor* y{};
73
  int process_type{0};
Y
Yan Chunwei 已提交
74 75
};

76
struct LayoutParam : ParamBase {
Y
Yan Chunwei 已提交
77 78
  const lite::Tensor* x{};
  lite::Tensor* y{};
79
  int process_type{0};
Y
Yan Chunwei 已提交
80 81
};

82
struct CalibParam : ParamBase {
Y
Yan Chunwei 已提交
83 84 85 86 87
  const lite::Tensor* input{};
  lite::Tensor* output{};
  float scale;
};

88
struct SubgraphParam : ParamBase {
89 90 91 92
  std::vector<std::string> input_names{};
  std::vector<std::string> output_names{};
  std::vector<std::string> input_data_names{};
  std::vector<std::string> output_data_names{};
93 94 95
  int block_idx{-1};
  std::shared_ptr<const cpp::ProgramDesc> program_desc{nullptr};
  Scope* exec_scope{nullptr};
Y
Yan Chunwei 已提交
96 97 98 99
};

/// -------------------------- NN operators ------------------------------------

100
struct FcParam : ParamBase {
Y
Yan Chunwei 已提交
101 102 103 104 105 106
  lite::Tensor* input{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* bias{nullptr};
  lite::Tensor* output{nullptr};
  lite::DDim in_mat_dims;
  int in_num_col_dims{1};
107
  std::string activation_type{""};
108
  bool padding_weights{false};
Y
Yan Chunwei 已提交
109 110
  // for int8
  WITH_INT8_CONFIG
111 112
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
113 114
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
115 116 117 118 119
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({input}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
120 121
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
122 123 124 125 126 127 128
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

struct SearchSeqFcParam : ParamBase {
129 130 131 132 133 134 135
  lite::Tensor* x{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* b{nullptr};
  lite::Tensor* out{nullptr};
  int out_size;
};

Y
Yan Chunwei 已提交
136
// For Interpolate Op
137
struct InterpolateParam : ParamBase {
Y
Yan Chunwei 已提交
138 139 140
  lite::Tensor* X{};
  lite::Tensor* OutSize{};
  lite::Tensor* Out{};
L
liu zhengxi 已提交
141
  std::vector<const lite::Tensor*> SizeTensor;
142
  lite::Tensor* Scale{};
Y
Yan Chunwei 已提交
143 144 145 146 147

  float scale{0.f};
  int out_h{-1};
  int out_w{-1};
  bool align_corners{true};
148
  int align_mode{1};
Y
Yan Chunwei 已提交
149
  std::string interp_method{"Nearest"};
L
liu zhengxi 已提交
150
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
Y
Yan Chunwei 已提交
151 152 153
};

// For Mul Op
154
struct MulParam : ParamBase {
Y
Yan Chunwei 已提交
155 156 157 158 159 160 161 162
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  lite::Tensor* output{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
  // for int8
  WITH_INT8_CONFIG
163 164
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
165 166
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
167 168 169 170 171
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x, y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
172 173
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
174 175 176 177
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
178 179
};

180
struct MulGradParam : ParamBase {
Y
Yan Chunwei 已提交
181 182 183 184 185 186 187 188 189 190
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* output_grad{};
  lite::Tensor* x_grad{};
  lite::Tensor* y_grad{};

  int x_num_col_dims{1};
  int y_num_col_dims{1};
};

191
// For ReduceMean Op
192
struct ReduceMeanParam : ParamBase {
193 194 195 196 197 198 199 200
  lite::Tensor* X{};
  lite::Tensor* Out{};

  std::vector<int> dim;
  bool keep_dim{false};
};

// For Stack Op
201
struct StackParam : ParamBase {
202 203 204 205 206 207
  std::vector<lite::Tensor*> X;
  lite::Tensor* Out{};

  int axis{0};
};

Y
Yan Chunwei 已提交
208
// For Power Op
209
struct PowerParam : ParamBase {
Y
Yan Chunwei 已提交
210 211 212 213 214 215 216 217
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  float scale{};
  float shift{};
  float power{};
};

218
struct ShuffleChannelParam : ParamBase {
Y
Yan Chunwei 已提交
219 220 221 222 223 224 225
  const lite::Tensor* X{};
  lite::Tensor* Out{};

  int group;
};

// For Yolobox
226
struct YoloBoxParam : ParamBase {
Y
Yan Chunwei 已提交
227 228 229 230 231 232 233 234 235 236 237 238
  lite::Tensor* X{};
  lite::Tensor* ImgSize{};
  lite::Tensor* Boxes{};
  lite::Tensor* Scores{};

  std::vector<int> anchors{};
  int class_num{0};
  float conf_thresh{0.f};
  int downsample_ratio{0};
};

// For Scale Op
239
struct ScaleParam : ParamBase {
Y
Yan Chunwei 已提交
240 241 242 243 244 245
  lite::Tensor* x{};
  lite::Tensor* output{};

  float scale{1.};
  float bias{};
  bool bias_after_scale{true};
246 247 248
  std::string activation_type{""};
  bool fuse_relu{false};
  float alpha{6.};
249 250
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
251 252
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
253 254 255 256 257
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
258 259
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
260 261 262 263
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
264 265 266
};

// For Softmax op
267
struct SoftmaxParam : ParamBase {
Y
Yan Chunwei 已提交
268 269 270
  lite::Tensor* x{};
  lite::Tensor* output{};
  int axis{-1};
W
Wilber 已提交
271
  bool use_cudnn{true};
272 273
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
274 275
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
276 277 278 279 280
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
281 282
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
283 284 285 286
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
287 288 289
};

// For Reshape and Reshape2 Op
290
struct ReshapeParam : ParamBase {
Y
Yan Chunwei 已提交
291
  const lite::Tensor* x{};
292 293 294
  std::vector<const lite::Tensor*> shape_tensor_vct{};
  const lite::Tensor* shape_tensor{};
  std::vector<int> shape_vct{};
Y
Yan Chunwei 已提交
295 296
  lite::Tensor* output{};

297
  lite::Tensor* xshape{};
Y
Yan Chunwei 已提交
298
  bool inplace{false};
299 300
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
301 302
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
303 304 305 306 307
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
308 309
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
310 311 312 313
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
314 315 316
};

// For Concat op
317
struct ConcatParam : ParamBase {
Y
Yan Chunwei 已提交
318 319 320
  std::vector<lite::Tensor*> x{};
  lite::Tensor* output{};
  int axis{0};
321
  lite::Tensor* axis_tensor{};
322
  // get a vector of input tensors
323 324
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
325 326 327 328 329 330 331 332 333
      std::vector<const Tensor*> vec;
      for (auto in : x) {
        vec.push_back(in);
      }
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>(vec));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
334 335
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
336 337 338 339
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
340 341
};

342
/// ----------------------- activation operators ----------------------
343
struct ActivationParam : ParamBase {
344
  const lite::Tensor* X{};
345
  lite::Tensor* Out{};
346
  lite_api::ActivationType active_type{lite_api::ActivationType::kIndentity};
347
  bool has_active{false};
348 349 350 351 352 353
  float Leaky_relu_alpha{0};   // leaky_relu param
  float Relu_clipped_coef{6};  // relu_clipped param
  std::string Prelu_mode{
      "channel"};  // prelu param, can be "all", "channel" or "element"
  lite::Tensor* Prelu_alpha{};  // prelu param
  float Swish_beta;             // swish param
354
  // hard_sigmoid param
355 356
  float hard_sigmoid_slope{0.2f};
  float hard_sigmoid_offset{0.5f};
357 358 359 360
  // hard_swish param
  float hard_swish_threshold{6.0};
  float hard_swish_scale{6.0};
  float hard_swish_offset{3.0};
361 362
  // thresholded_relu
  float relu_threshold{1.0f};
H
HappyAngel 已提交
363 364
  // elu
  float Elu_alpha{1.0f};
365 366
};

367
struct ActivationGradParam : ParamBase {
368 369 370 371 372 373 374
  const lite::Tensor* X{};
  const lite::Tensor* Out{};
  // for backward
  lite::Tensor* X_grad{};
  const lite::Tensor* Out_grad{};
};

Y
Yan Chunwei 已提交
375
// For Convolution op
376
struct ConvParam : ParamBase {
Y
Yan Chunwei 已提交
377 378 379 380 381 382
  lite::Tensor* x{};
  lite::Tensor* filter{};
  lite::Tensor* bias{nullptr};
  lite::Tensor* residualData{nullptr};
  lite::Tensor* output{};
  std::vector<int> strides{1, 1};
H
HappyAngel 已提交
383
  /* paddings type change
384 385 386 387
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
H
HappyAngel 已提交
388
  std::shared_ptr<std::vector<int>> paddings;
Y
Yan Chunwei 已提交
389
  int groups{1};
H
HappyAngel 已提交
390
  /* dilations type change
391 392 393 394
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
H
HappyAngel 已提交
395
  std::shared_ptr<std::vector<int>> dilations;
Y
Yan Chunwei 已提交
396 397 398 399 400 401 402 403 404 405 406 407
  bool fuse_relu_before_depthwise_conv{false};
  bool use_mkldnn{false};
  bool fuse_relu{false};  // only used in mkldnn kernel
  bool use_quantizer{
      false};  // set true for op that should be quantized, only used for cpu
  bool fuse_residual_connection{false};
  float scale_in{1.0f};           // only used with mkl-dnn int8
  float scale_out{1.0f};          // only used with mkl-dnn int8
  float scale_in_eltwise{1.0f};   // only used with mkl-dnn int8
  float scale_weights{1.0f};      // only used with mkl-dnn int8
  bool force_fp32_output{false};  // only used in mkl-dnn int8
  std::string data_format{"Anylayout"};
408 409
  // for activation
  ActivationParam activation_param;
W
Wilber 已提交
410 411
  // support var_length or not
  bool var_length{false};
412 413
  // only used in conv_transpose.
  std::vector<int> output_size;
Y
Yan Chunwei 已提交
414 415
  // for int8
  WITH_INT8_CONFIG
416 417 418

  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
419 420
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
421 422 423 424 425
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
426 427
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
428 429 430 431
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
432 433 434
};

// For BatchNorm op
435
struct BatchNormParam : ParamBase {
Y
Yan Chunwei 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
  lite::Tensor* x{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* mean{};
  lite::Tensor* variance{};
  lite::Tensor* y{};
  lite::Tensor* mean_out{};
  lite::Tensor* variance_out{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  bool is_test{true};
  bool use_global_stats{false};
  float epsilon;
  float momentum;
  DataLayoutType data_layout{DATALAYOUT(kNCHW)};
451 452
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
453 454
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
455 456 457 458 459
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
460 461
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
462 463 464 465
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({y}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
466 467 468
};

// For Pooling op
469
struct PoolParam : ParamBase {
Y
Yan Chunwei 已提交
470 471 472 473 474 475 476
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::string pooling_type{""};
  std::vector<int> ksize{};
  bool global_pooling{
      false};  // if true, knernel size and paddings will be ignored
  std::vector<int> strides{1, 1};
477
  /* paddings type change
478 479 480 481
   * from std::vector<int> to std::shared_ptr<std::vector<int>>
   * to support dynamically modify padding
   * let kernel param and operator param Synchronous update
   */
482
  std::shared_ptr<std::vector<int>> paddings;
Y
Yan Chunwei 已提交
483 484 485 486 487
  bool exclusive{true};
  bool adaptive{false};
  bool ceil_mode{false};
  bool use_quantizer{false};
  std::string data_format{"AnyLayout"};
J
juncaipeng 已提交
488 489
  // for int8
  WITH_INT8_CONFIG
490 491
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
492 493
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
494 495 496 497 498
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
499 500
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
501 502 503 504
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
505 506 507
};

// For Dropout op
508
struct DropoutParam : ParamBase {
Y
Yan Chunwei 已提交
509 510 511 512 513 514 515 516 517 518 519
  const lite::Tensor* x{};
  lite::Tensor* output{};
  lite::Tensor* mask{};
  float dropout_prob{.5f};
  bool is_test{false};
  bool fix_seed{false};
  int seed{0};
  std::string dropout_implementation{"downgrade_in_infer"};
};

// For Split op
520
struct SplitParam : ParamBase {
Y
Yan Chunwei 已提交
521 522
  lite::Tensor* x{};
  std::vector<lite::Tensor*> output{};
523 524 525
  lite::Tensor* axis_tensor;
  std::vector<lite::Tensor*> sections_tensor_list{};

Y
Yan Chunwei 已提交
526 527 528
  int axis{-1};
  int num{0};
  std::vector<int> sections;
529 530
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
531 532
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
533 534 535 536 537
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
538 539
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
540 541 542 543
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
544 545 546
};

// For Transpose op
547
struct TransposeParam : ParamBase {
Y
Yan Chunwei 已提交
548 549
  const lite::Tensor* x{};
  lite::Tensor* output{};
550 551
  lite::Tensor* xshape{};

Y
Yan Chunwei 已提交
552 553 554
  std::vector<int> axis;
  bool use_mkldnn{false};
  std::string data_format{"AnyLayout"};
555 556
  ///////////////////////////////////////////////////////////////////////////////////
  //  // get a vector of input tensors
557 558
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
559 560 561 562 563
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
564 565
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
566 567 568 569
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
570 571 572
};

/// ----------------------- element wise operators ----------------------
573
struct ElementwiseParam : ParamBase {
Y
Yan Chunwei 已提交
574 575 576 577
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int axis{-1};  // for broadcasting.
J
juncaipeng 已提交
578
  // for int8
Z
Zhaolong Xing 已提交
579
  WITH_INT8_CONFIG
J
juncaipeng 已提交
580 581
  float x_input_scale{1.0};
  float y_input_scale{1.0};
582 583
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
584 585
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
586 587 588 589 590
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X, Y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
591 592
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
593 594 595 596 597 598 599
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

struct ElementwiseGradParam : ParamBase {
X
xiaogang 已提交
600
  const lite::Tensor* X{};
Y
Yan Chunwei 已提交
601
  const lite::Tensor* Y{};
X
xiaogang 已提交
602 603 604
  const lite::Tensor* OutGrad{};
  lite::Tensor* XGrad{};
  lite::Tensor* YGrad{};
Y
Yan Chunwei 已提交
605 606 607 608 609 610 611 612 613 614 615 616
  int axis{-1};  // for broadcasting.
};

struct FusionElementwiseActivationParam : public ElementwiseParam {
  std::string act_type;
};

struct FusionElementwiseActivationGradParam : public ElementwiseGradParam {
  std::string act_type;
};

/// ----------------------- mean operators ----------------------
617
struct MeanParam : ParamBase {
Y
Yan Chunwei 已提交
618 619 620 621
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

622
struct MeanGradParam : ParamBase {
Y
Yan Chunwei 已提交
623 624 625 626 627 628 629
  const lite::Tensor* X{};
  const lite::Tensor* Out_grad{};
  // for backward
  lite::Tensor* X_grad{};
};

/// ----------------------- fill_constant operators ----------------------
630
struct FillConstantParam : ParamBase {
Y
Yan Chunwei 已提交
631 632
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  std::vector<int64_t> shape{};
633
  lite::Tensor* shape_tensor{nullptr};
634 635
  std::vector<lite::Tensor*> shape_tensor_list{};

T
TianXiaogang 已提交
636 637 638 639 640
  float value{0.0f};
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
  lite::Tensor* out{};
};
Y
Yan Chunwei 已提交
641

642
struct FillConstantBatchSizeLikeParam : ParamBase {
643 644
  const lite::Tensor* input{nullptr};
  lite::Tensor* out{nullptr};
645

646
  std::vector<int> shape{};
647 648 649 650
  int input_dim_idx{0};
  int output_dim_idx{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  float value{0.0f};
651 652
  // useless for x86, keep it for compatibility
  bool force_cpu{false};
653 654
};

Y
Yan Chunwei 已提交
655
//
656
struct FakeQuantizeMovingAvgMaxAbsParam : ParamBase {
Y
Yan Chunwei 已提交
657 658 659 660 661 662 663 664 665 666
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  const lite::Tensor* in_accum{};
  const lite::Tensor* in_state{};
  lite::Tensor* out{};
  lite::Tensor* out_scale{};
  lite::Tensor* out_state{};
  lite::Tensor* out_accum{};
  int bit_length;
  bool is_test{true};
667
  float moving_rate{0.9f};
Y
Yan Chunwei 已提交
668 669
};

670
struct FakeDequantizeMaxAbsParam : ParamBase {
Y
Yan Chunwei 已提交
671 672 673 674 675 676
  const lite::Tensor* x{};
  const lite::Tensor* in_scale{};
  lite::Tensor* out{};
  float max_range;
};

677
struct FakeChannelWiseDequantizeMaxAbsParam : ParamBase {
678 679 680 681 682 683
  const lite::Tensor* x{};
  std::vector<const lite::Tensor*> scale_tensors{};
  lite::Tensor* out{};
  std::vector<int> quant_bits;
};

684 685 686 687 688 689 690
struct FakeQuantDequantAbsMaxParam : ParamBase {
  const lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* out_scale{};
  int bit_length;
};

Y
Yan Chunwei 已提交
691
/// ----------------------- sgd operators ----------------------
692
struct SGDParam : ParamBase {
Y
Yan Chunwei 已提交
693 694 695 696 697 698 699 700 701
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};

  const lite::Tensor* Param{};
  const lite::Tensor* LearningRate{};
  const lite::Tensor* Grad{};
  lite::Tensor* ParamOut{};
};

/// ----------------------- uniform_random operators ----------------------
702
struct UniformRandomParam : ParamBase {
Y
Yan Chunwei 已提交
703 704 705 706 707 708 709 710
  std::vector<int64_t> shape{};
  float min{-1.0f};
  float max{1.0f};
  int seed{0};
  int dtype{static_cast<int>(VarDescAPI::VarDataType::FP32)};
  lite::Tensor* Out{};
};
/// ----------------------- negative operators --------------
711
struct NegativeParam : ParamBase {
Y
Yan Chunwei 已提交
712 713 714 715
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
/// ----------------------- pad2d operators ----------------------
716
struct Pad2dParam : ParamBase {
Y
Yan Chunwei 已提交
717 718 719 720 721 722 723 724 725
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> paddings{0, 0, 0, 0};
  std::string mode{"constant"};
  float pad_value = 0.f;
  std::string data_format{"NCHW"};
};

/// ----------------------- Crop operators ----------------------
726
struct CropParam : ParamBase {
Y
Yan Chunwei 已提交
727 728 729 730 731 732 733
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> offsets;
  std::vector<int> shape;
};

///----------------------- argmax operators ----------------------
734
struct ArgmaxParam : ParamBase {
Y
Yan Chunwei 已提交
735 736 737 738 739 740
  lite::Tensor* X{};
  lite::Tensor* Out{};
  int Axis{0};
};

///----------------------- axpy operators ----------------------
741
struct AxpyParam : ParamBase {
Y
Yan Chunwei 已提交
742 743 744 745 746 747
  lite::Tensor* Scale{};
  lite::Tensor* X{};
  lite::Tensor* Bias{};
  lite::Tensor* Out{};
};
/// ----------------------- GRU unit operators ----------------------f
748
struct GRUUnitParam : ParamBase {
Y
Yan Chunwei 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
  enum ActType { identity, sigmoid, tanh, relu };
  const lite::Tensor* input{nullptr};
  const lite::Tensor* hidden_prev{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* gate{nullptr};
  lite::Tensor* reset_hidden_prev{nullptr};
  lite::Tensor* hidden{nullptr};

  int gate_activation{ActType::sigmoid};
  int activation{ActType::tanh};
  bool origin_mode{false};
};

/// ------------------------------ lrn operators ------------------------------
764
struct LrnParam : ParamBase {
Y
Yan Chunwei 已提交
765 766
  const lite::Tensor* X{};
  lite::Tensor* Out{};
767
  int n{5};
768 769 770
  float alpha{1e-4f};
  float beta{0.75f};
  float k{1.f};
Y
Yan Chunwei 已提交
771 772 773 774
  std::string norm_region{"AcrossChannels"};
};

/// ----------------------- decode_bboxes operators ----------------------
775
struct DecodeBboxesParam : ParamBase {
Y
Yan Chunwei 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
  const lite::Tensor* loc_data{};
  const lite::Tensor* prior_data{};
  lite::Tensor* bbox_data{};

  int batch_num;
  int num_priors;
  int num_loc_classes{0};
  int background_label_id{0};
  bool share_location{true};
  bool variance_encoded_in_target;
  // code_type:  corner, cente_size, corner_size
  std::string code_type;
};

/// ----------------------- box_coder operators ----------------------
791
struct BoxCoderParam : ParamBase {
Y
Yan Chunwei 已提交
792 793 794 795 796
  const lite::Tensor* prior_box{};
  const lite::Tensor* prior_box_var{};
  const lite::Tensor* target_box{};
  lite::Tensor* proposals{};
  // code_type: encode_center_size and decode_center_size
797 798 799 800
  std::string code_type{"encode_center_size"};
  bool box_normalized{true};
  int axis{0};
  std::vector<float> variance{};
Y
Yan Chunwei 已提交
801 802 803
};

/// ----------------------- multiclass_nms operators ----------------------
804
struct MulticlassNmsParam : ParamBase {
805 806 807
  const lite::Tensor* bboxes{};
  const lite::Tensor* scores{};
  lite::Tensor* out{};
808
  lite::Tensor* index{};
809 810 811
  int background_label{0};
  float score_threshold{};
  int nms_top_k{};
812 813
  float nms_threshold{0.3f};
  float nms_eta{1.0f};
Y
Yan Chunwei 已提交
814
  int keep_top_k;
815
  bool normalized{true};
Y
Yan Chunwei 已提交
816 817 818
};

/// ----------------------- priorbox operators ----------------------
819
struct PriorBoxParam : ParamBase {
Y
Yan Chunwei 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
  lite::Tensor* input{};
  lite::Tensor* image{};
  lite::Tensor* boxes{};
  lite::Tensor* variances{};

  bool flip;
  bool clip;
  std::vector<float> min_sizes;
  std::vector<float> max_sizes;
  std::vector<float> aspect_ratios;
  std::vector<float> variances_;
  int img_w{0};
  int img_h{0};
  float step_w{0};
  float step_h{0};
  float offset{0.5};
  int prior_num{0};
  // priortype: prior_min, prior_max, prior_com
  std::vector<std::string> order;
839
  bool min_max_aspect_ratios_order{false};
Y
Yan Chunwei 已提交
840 841 842 843 844
};

struct DensityPriorBoxParam : public PriorBoxParam {
  std::vector<float> fixed_sizes;
  std::vector<float> fixed_ratios;
T
TianXiaogang 已提交
845
  std::vector<int> density_sizes;
Y
Yan Chunwei 已提交
846 847
};
/// ----------------------- GRU operators ----------------------f
848
struct GRUParam : ParamBase {
Y
Yan Chunwei 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
  const lite::Tensor* input{nullptr};
  const lite::Tensor* h0{nullptr};
  const lite::Tensor* weight{nullptr};
  const lite::Tensor* bias{nullptr};
  lite::Tensor* batch_gate{nullptr};
  lite::Tensor* batch_reset_hidden_prev{nullptr};
  lite::Tensor* batch_hidden{nullptr};
  lite::Tensor* hidden{nullptr};

  std::string gate_activation{"sigmoid"};
  std::string activation{"tanh"};
  bool is_reverse{false};
  bool origin_mode{false};
};

/// ----------------------- BeamSearchDecode operators ----------------------f
865
struct BeamSearchDecodeParam : ParamBase {
Y
Yan Chunwei 已提交
866 867 868 869 870 871 872 873 874
  std::vector<lite::Tensor>* ids{nullptr};
  std::vector<lite::Tensor>* scores{nullptr};
  lite::Tensor* sentence_ids{nullptr};
  lite::Tensor* sentence_scores{nullptr};
  int beam_size;
  int end_id;
};

/// ----------------------- LookupTable operators ----------------------f
875
struct LookupTableParam : ParamBase {
876 877
  const lite::Tensor* W{nullptr};
  const lite::Tensor* Ids{nullptr};
Y
Yan Chunwei 已提交
878 879 880 881
  lite::Tensor* Out{nullptr};
  int64_t padding_idx{-1};
};

882
struct LookupTableDequantParam : ParamBase {
M
mapingshuo 已提交
883 884 885 886 887 888
  lite::Tensor* W{nullptr};
  lite::Tensor* Ids{nullptr};
  lite::Tensor* Out{nullptr};
  int64_t padding_idx{-1};
};

889
struct Im2SequenceParam : ParamBase {
Y
Yan Chunwei 已提交
890 891 892 893 894 895 896 897 898
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> kernels{3, 3};
  std::vector<int> strides{1, 1};
  std::vector<int> paddings{0, 0, 0, 0};
  std::vector<int> out_strides{1, 1};
};

899
struct SequenceSoftmaxParam : ParamBase {
Y
Yan Chunwei 已提交
900 901
  const lite::Tensor* X{};
  lite::Tensor* Out{};
902 903
  ///////////////////////////////////////////////////////////////////////////////////
  //  // get a vector of input tensors
904 905
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
906 907 908 909 910
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
911 912
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
913 914 915 916
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
917 918
};

919
struct NormParam : ParamBase {
Y
Yan Chunwei 已提交
920 921
  const lite::Tensor* X{};
  lite::Tensor* Out{};
922
  lite::Tensor* Norm{};
Y
Yan Chunwei 已提交
923
  int axis{1};
924
  float epsilon{1e-10f};
Y
Yan Chunwei 已提交
925
};
926
struct LayerNormParam : ParamBase {
T
TianXiaogang 已提交
927 928 929 930 931 932 933
  const lite::Tensor* X{};
  const lite::Tensor* Scale{};
  const lite::Tensor* Bias{};
  lite::Tensor* Y{};
  lite::Tensor* Mean{};
  lite::Tensor* Variance{};
  int begin_norm_axis{1};
934
  float epsilon{1e-5f};
T
TianXiaogang 已提交
935
};
Y
Yan Chunwei 已提交
936

937
struct LogicalParam : ParamBase {
Y
Yan Chunwei 已提交
938 939 940 941 942
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
};

943
struct CompareParam : ParamBase {
Y
Yan Chunwei 已提交
944 945 946 947 948 949 950
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  bool force_cpu{0};
  int axis{-1};
  lite::Tensor* Out{};
};

951
struct WhileParam : ParamBase {
Y
Yan Chunwei 已提交
952
  Tensor* cond{};
953 954 955
  int block_idx{-1};
  std::shared_ptr<const cpp::ProgramDesc> program_desc{nullptr};
  Scope* exec_scope{nullptr};
Y
Yan Chunwei 已提交
956 957
};

958
struct TopkParam : ParamBase {
Y
Yan Chunwei 已提交
959 960 961 962 963 964
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* Indices{};
  int K{1};
};

965
struct IncrementParam : ParamBase {
Y
Yan Chunwei 已提交
966 967 968 969 970
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  float step{1};
};

971
struct WriteToArrayParam : ParamBase {
972 973 974
  const lite::Tensor* X{nullptr};
  const lite::Tensor* I{nullptr};
  std::vector<lite::Tensor>* Out{nullptr};
Y
Yan Chunwei 已提交
975 976
};

977
struct ReadFromArrayParam : ParamBase {
978 979 980
  const std::vector<lite::Tensor>* X{nullptr};
  const lite::Tensor* I{nullptr};
  lite::Tensor* Out{nullptr};
Y
Yan Chunwei 已提交
981 982
};

983
struct BeamSearchParam : ParamBase {
Y
Yan Chunwei 已提交
984 985 986 987 988 989 990 991 992 993 994 995 996
  const lite::Tensor* pre_ids{};
  const lite::Tensor* pre_scores{};
  const lite::Tensor* ids{};
  const lite::Tensor* scores{};
  lite::Tensor* selected_ids{};
  lite::Tensor* selected_scores{};
  lite::Tensor* parent_idx{};
  int level;
  int beam_size;
  int end_id;
  bool is_accumulated;
};

997
struct SequencePoolParam : ParamBase {
Y
Yan Chunwei 已提交
998 999
  const lite::Tensor* X{};
  lite::Tensor* Out{};
1000
  lite::Tensor* MaxIndex{};
1001 1002 1003 1004
  std::string pool_type{"AVERAGE"};
#ifdef LITE_WITH_X86
  float pad_value{0.0};
#endif
Y
Yan Chunwei 已提交
1005 1006
};

1007
struct SequenceConvParam : ParamBase {
1008 1009 1010 1011 1012 1013 1014 1015
  const lite::Tensor* X{};
  const lite::Tensor* Filter{};
  lite::Tensor* Out{};
  int contextStart{0};
  int contextStride{1};
  int contextLength;
};

1016
struct SequencePoolConcatParam : ParamBase {
1017 1018 1019 1020 1021
  std::vector<lite::Tensor*> X{};
  lite::Tensor* Out{};
  std::vector<std::string> pool_type{};
};

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
struct SequencePoolGradParam : ParamBase {
  const lite::Tensor* X{};
  std::string pool_type{"AVERAGE"};
#ifdef LITE_WITH_X86
  float pad_value{0.0};
#endif
  // for backward
  const lite::Tensor* Out_Grad{};
  const lite::Tensor* MaxIndex_Grad{};
  lite::Tensor* X_Grad{};
};

1034
struct SearchGroupPaddingParam : ParamBase {
1035 1036 1037 1038 1039 1040 1041
  lite::Tensor* x{};
  lite::Tensor* out_emb_padding{};
  lite::Tensor* out_new{};
  lite::Tensor* out_padding{};
  int pad_id;
};

1042
struct SequenceReshapeParam : ParamBase {
1043 1044 1045 1046 1047
  lite::Tensor* x{};
  lite::Tensor* output{};
  int new_dim;
};

1048
struct SequenceExpandParam : ParamBase {
Y
Yan Chunwei 已提交
1049 1050 1051 1052 1053 1054
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int ref_level{-1};
};

1055 1056 1057 1058 1059 1060 1061 1062
struct SequencePadParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* PadValue{};
  lite::Tensor* Out{};
  lite::Tensor* Length{};
  int padded_length{-1};
};

1063 1064 1065 1066 1067 1068
struct SequenceUnpadParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* Length{};
  lite::Tensor* Out{};
};

1069 1070 1071 1072 1073 1074 1075 1076
struct SequenceMaskParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* MaxLenTensor{nullptr};
  lite::Tensor* Y{};
  int maxlen{-1};
  int out_dtype;
};

1077
struct SequenceExpandAsParam : ParamBase {
L
lhl960107 已提交
1078 1079 1080 1081 1082
  const lite::Tensor* x{nullptr};
  const lite::Tensor* y{nullptr};
  lite::Tensor* out{nullptr};
};

1083
struct SequenceReverseParam : ParamBase {
1084 1085 1086 1087
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

1088
struct SequenceConcatParam : ParamBase {
1089 1090 1091 1092
  std::vector<lite::Tensor*> X{};
  lite::Tensor* Out{};
};

1093
struct AttentionPaddingMaskParam : ParamBase {
1094 1095 1096 1097 1098 1099 1100 1101
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  int pad_id;
  float mask;
  lite::Tensor* Out{};
  lite::Tensor* pad_begin{};
};

1102
struct SequenceArithmeticParam : ParamBase {
1103 1104 1105 1106 1107 1108
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  int op_type{1};
  lite::Tensor* Out{};
};

1109
struct ReduceMaxParam : ParamBase {
Y
Yan Chunwei 已提交
1110 1111 1112 1113 1114 1115
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> dim{};
  bool keep_dim{false};
};

1116
struct LodResetParam : ParamBase {
Y
Yan Chunwei 已提交
1117 1118 1119 1120 1121 1122 1123
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  std::vector<int> target_lod;
  bool append;
};

1124
struct IsEmptyParam : ParamBase {
Y
Yan Chunwei 已提交
1125 1126 1127
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};
1128

1129
struct ReduceParam : ParamBase {
1130 1131 1132 1133 1134 1135 1136
  lite::Tensor* x{};
  lite::Tensor* output{};
  std::vector<int> dim{0};
  bool keep_dim{false};
  bool reduce_all{false};
};

1137
struct VarConv2DParam : ParamBase {
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
  const lite::Tensor* X{};
  const lite::Tensor* ROW{};
  const lite::Tensor* COLUMN{};
  const lite::Tensor* W{};
  lite::Tensor* Out{};
  lite::Tensor* Col{};

  int input_channel;
  int output_channel;
  int stride_h;
  int stride_w;
  int kernel_h;
  int kernel_w;
1151 1152

  bool fuse_relu{false};
1153 1154 1155 1156 1157

#ifdef LITE_WITH_XPU
  bool __xpu__float_to_fix{false};  // Is W already converted to int16/int8
  float __xpu__w_max{0.0f};         // Abs max in W
#endif
1158 1159
};

Y
Yan Chunwei 已提交
1160
/// ----------------------- shape operators ----------------------
1161
struct ShapeParam : ParamBase {
Y
Yan Chunwei 已提交
1162 1163 1164 1165
  const lite::Tensor* X{};
  lite::Tensor* Out{};
};

1166
struct CastParam : ParamBase {
Y
Yan Chunwei 已提交
1167 1168 1169 1170 1171 1172
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  int out_dtype{2};
  int in_dtype{2};
};

1173
struct SliceParam : ParamBase {
Y
Yan Chunwei 已提交
1174 1175 1176 1177 1178 1179
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> axes{};
  std::vector<int> starts{};
  std::vector<int> ends{};
  std::vector<int> decrease_axis{};
1180 1181 1182 1183 1184
  std::vector<int> infer_flags{};
  std::vector<lite::Tensor*> StartsTensorList{};
  std::vector<lite::Tensor*> EndsTensorList{};
  lite::Tensor* StartsTensor{nullptr};
  lite::Tensor* EndsTensor{nullptr};
1185 1186
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1187 1188
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1189 1190 1191 1192 1193
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1194 1195
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1196 1197 1198 1199
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1200
};
Y
Yan Chunwei 已提交
1201

1202
struct AffineChannelParam : ParamBase {
1203 1204 1205 1206 1207 1208 1209
  const lite::Tensor* X{};  // X is 4D tensor
  const lite::Tensor* Scale{};
  const lite::Tensor* Bias{};
  std::string data_layout{"NCHW"};  // optional string from: NHWC, NCHW.
  lite::Tensor* Out{};
};

1210 1211 1212 1213 1214 1215 1216
struct AffineGridParam : ParamBase {
  const lite::Tensor* X{};  // Theta:shape {?, 2, 3}
  std::vector<int> output_shape;
  const lite::Tensor* OutputShape;
  lite::Tensor* Out{};
};

1217
struct AnchorGeneratorParam : ParamBase {
1218 1219 1220 1221
  const lite::Tensor* Input{};
  std::vector<float> anchor_sizes{};
  std::vector<float> aspect_ratios{};
  std::vector<float> stride{};
1222 1223
  std::vector<float> variances{{0.1f, 0.1f, 0.2f, 0.2f}};
  float offset{0.5f};
1224 1225 1226 1227 1228

  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};
};

1229
struct GenerateProposalsParam : ParamBase {
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
  // inputs
  const lite::Tensor* Scores{};
  const lite::Tensor* BboxDeltas{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Anchors{};
  lite::Tensor* Variances{};

  // attrs
  int pre_nms_topN{6000};
  int post_nms_topN{1000};
1240 1241 1242
  float nms_thresh{0.5f};
  float min_size{0.1f};
  float eta{1.0f};
1243 1244 1245 1246 1247

  // outputs
  lite::Tensor* RpnRois{};
  lite::Tensor* RpnRoiProbs{};
};
W
Wilber 已提交
1248
/// ----------------------- squeeze operators ----------------------
1249
struct SqueezeParam : ParamBase {
Y
Yan Chunwei 已提交
1250 1251 1252 1253
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
1254 1255
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1256 1257
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1258 1259 1260 1261 1262
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1263 1264
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1265 1266 1267 1268
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1269 1270
};

1271
struct UnsqueezeParam : ParamBase {
1272 1273 1274 1275
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  lite::Tensor* XShape{};
  std::vector<int> axes{};
1276
  const lite::Tensor* axes_tensor{};
1277
  std::vector<const lite::Tensor*> axes_tensor_vct{};
1278 1279
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1280 1281
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1282 1283 1284 1285 1286
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1287 1288
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1289 1290 1291 1292
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
1293 1294
};

Y
Yan Chunwei 已提交
1295
/// ----------------------- expand operators ----------------------
1296
struct ExpandParam : ParamBase {
Y
Yan Chunwei 已提交
1297 1298 1299 1300 1301
  const lite::Tensor* X{};
  lite::Tensor* Out{};
  std::vector<int> expand_times{};
};

1302 1303 1304 1305 1306 1307 1308
/// ----------------------- expand as operators ----------------------
struct ExpandAsParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* Target{};
  lite::Tensor* Out{};
};

Y
Yan Chunwei 已提交
1309
/// ----------------------- matmul operators ----------------------
1310
struct MatMulParam : ParamBase {
Y
Yan Chunwei 已提交
1311 1312 1313 1314 1315 1316
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  bool transpose_X{false};
  bool transpose_Y{false};
  float alpha{1.0f};
1317 1318
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
1319 1320
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
1321 1322 1323 1324 1325
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({X, Y}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
1326 1327
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
1328 1329 1330 1331
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({Out}));
    }
    return output_tensor_ptrs_cache_.get();
  }
Y
Yan Chunwei 已提交
1332
};
1333

1334
struct GatherParam : ParamBase {
T
TianXiaogang 已提交
1335 1336 1337 1338 1339
  const lite::Tensor* X{};
  const lite::Tensor* Index{};
  lite::Tensor* Out{};
};

1340
/// ----------------------- assign operators -----------------------
1341
struct AssignParam : ParamBase {
1342 1343 1344 1345 1346 1347 1348
  // for tensor
  const lite::Tensor* X{nullptr};
  lite::Tensor* Out{nullptr};

  // for tensor_array
  const std::vector<lite::Tensor>* X_array{nullptr};
  std::vector<lite::Tensor>* Out_array{nullptr};
1349
};
1350

1351
/// ----------------------- roi_align operators -----------------------
1352
struct RoiAlignParam : ParamBase {
1353 1354 1355 1356 1357 1358 1359 1360 1361
  lite::Tensor* X{};
  lite::Tensor* ROIs{};
  lite::Tensor* Out{};
  float spatial_scale{1.0};
  int pooled_height{1};
  int pooled_width{1};
  int sampling_ratio{-1};
};

1362
/// ----------------------- box_clip operators -----------------------
1363
struct BoxClipParam : ParamBase {
1364 1365 1366 1367 1368
  const lite::Tensor* Input{};
  const lite::Tensor* ImInfo{};
  lite::Tensor* Output{};
};

1369
struct RangeParam : ParamBase {
1370 1371 1372 1373 1374 1375
  const lite::Tensor* Start;
  const lite::Tensor* End;
  const lite::Tensor* Step;
  lite::Tensor* Out;
};

1376
/// ----------------------- assign_value operators -----------------------
1377
struct AssignValueParam : ParamBase {
1378 1379 1380 1381
  std::vector<int> shape{};
  int dtype{};
  std::vector<float> fp32_values{};
  std::vector<int> int32_values{};
1382 1383
  std::vector<int64_t> int64_values{};
  std::vector<int> bool_values{};
1384 1385 1386
  lite::Tensor* Out{};
};

1387
/// --------------- sequence_topk_avg_pooling operators ------------------
1388
struct SequenceTopkAvgPoolingParam : ParamBase {
1389 1390 1391 1392 1393 1394 1395 1396 1397
  const lite::Tensor* X{};
  const lite::Tensor* ROW{};
  const lite::Tensor* COLUMN{};
  lite::Tensor* Out{};
  lite::Tensor* pos{};
  int channel_num{};
  std::vector<int> topks{};
};

1398 1399 1400 1401 1402 1403 1404 1405 1406
/// --------------- topk_pooling operators ------------------
struct TopkPoolingParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* Y{};
  lite::Tensor* Out{};
  int top_k{1};
  int feat_map_num{1};
};

1407
/// --------------- search_fc operators ------------------
1408
struct SearchFcParam : ParamBase {
1409 1410 1411 1412 1413
  const lite::Tensor* X{};
  const lite::Tensor* W{};
  const lite::Tensor* b{};
  lite::Tensor* Out{};
  int out_size{};
1414 1415 1416 1417 1418 1419 1420

  bool fuse_relu{false};

#ifdef LITE_WITH_XPU
  bool __xpu__float_to_fix{false};  // Is W already converted to int16/int8
  float __xpu__w_max{0.0f};         // Abs max in W
#endif
1421
};
J
juncaipeng 已提交
1422
/// --------------------- match_matrix_tensor operators --------------------
1423
struct MatchMatrixTensorParam : ParamBase {
J
juncaipeng 已提交
1424 1425 1426 1427 1428 1429 1430
  const lite::Tensor* x{};
  const lite::Tensor* y{};
  const lite::Tensor* w{};
  lite::Tensor* out{};
  lite::Tensor* tmp{};

  int dim_t;
1431 1432 1433 1434 1435 1436
  bool fuse_relu{false};

#ifdef LITE_WITH_XPU
  bool __xpu__float_to_fix{false};  // Is w already converted to int16/int8
  float __xpu__w_max{0.0f};         // Abs max in w
#endif
J
juncaipeng 已提交
1437 1438 1439
};

/// --------------------- search_seq_depadding operators --------------------
1440
struct SearchSeqDepaddingParam : ParamBase {
J
juncaipeng 已提交
1441 1442 1443 1444 1445 1446
  const lite::Tensor* pad{};
  const lite::Tensor* src{};
  lite::Tensor* out{};
};

/// --------------------- search_grnn operators --------------------
1447
struct SearchGrnnParam : ParamBase {
J
juncaipeng 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
  const lite::Tensor* x{};
  const lite::Tensor* wi{};
  const lite::Tensor* wh{};
  int num_input;
  int num_hidden;

  lite::Tensor* out{};
  lite::Tensor* tmp_buffer{};
  lite::Tensor* idx_sorted_by_width{};
  lite::Tensor* layout_input{};
1458 1459 1460 1461 1462 1463

#ifdef LITE_WITH_XPU
  bool __xpu__float_to_fix{false};   // Is wi/wh already converted to int16/int8
  std::vector<float> __xpu__wi_max;  // Abs max in wi
  std::vector<float> __xpu__wh_max;  // Abs max in wh
#endif
J
juncaipeng 已提交
1464 1465
};

1466
struct SplitLodTensorParam : ParamBase {
J
juncaipeng 已提交
1467 1468 1469 1470 1471 1472 1473
  const lite::Tensor* x{};
  const lite::Tensor* mask{};
  lite::Tensor* out_true{};
  lite::Tensor* out_false{};
  int level{};
};

1474
struct MergeLodTensorParam : ParamBase {
J
juncaipeng 已提交
1475 1476 1477 1478 1479 1480 1481 1482
  const lite::Tensor* x{};
  const lite::Tensor* mask{};
  const lite::Tensor* in_true{};
  const lite::Tensor* in_false{};
  lite::Tensor* out{};
  int level{};
};

1483
struct ConditionalBlockParam : ParamBase {
J
juncaipeng 已提交
1484
  const lite::Tensor* cond{};
1485
  std::vector<lite::Tensor*> inputs{};
J
juncaipeng 已提交
1486
  std::vector<lite::Tensor*> outs{};
1487 1488 1489
  int block_idx{-1};
  std::shared_ptr<const cpp::ProgramDesc> program_desc{nullptr};
  Scope* exec_scope{nullptr};
J
juncaipeng 已提交
1490 1491 1492
  bool is_scalar_condition{};
};

1493
struct CollectFpnProposalsParam : ParamBase {
J
juncaipeng 已提交
1494 1495 1496 1497 1498 1499
  std::vector<lite::Tensor*> multi_level_rois{};
  std::vector<lite::Tensor*> multi_level_scores{};
  lite::Tensor* fpn_rois{};
  int post_nms_topN{};
};

1500
struct DistributeFpnProposalsParam : ParamBase {
J
juncaipeng 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509
  const lite::Tensor* fpn_rois{};
  std::vector<lite::Tensor*> multi_fpn_rois{};
  lite::Tensor* restore_index{};
  int min_level{};
  int max_level{};
  int refer_level{};
  int refer_scale{};
};

1510
/// --------------------- instance_norm operators --------------------
1511
struct InstanceNormParam : ParamBase {
1512 1513 1514 1515 1516 1517 1518 1519
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  float epsilon;
};
H
HappyAngel 已提交
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
/// --------------------- group_norm operators --------------------
struct GroupNormParam : ParamBase {
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* bias{};
  lite::Tensor* scale{};
  lite::Tensor* saved_mean{};
  lite::Tensor* saved_variance{};
  float epsilon;
  int groups;
  int channels;
};

1533
/// --------------------- grid sampler operators --------------------
1534
struct GridSamplerParam : ParamBase {
1535 1536 1537 1538
  lite::Tensor* x{};
  lite::Tensor* out{};
  lite::Tensor* grid{};
};
1539
struct LstmParam : ParamBase {
X
xiaogang 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
  lite::Tensor* Input{};
  lite::Tensor* Weight{};
  lite::Tensor* Bias{};
  lite::Tensor* Hidden{};
  lite::Tensor* Cell{};
  lite::Tensor* BatchGate{};
  lite::Tensor* BatchCellPreAct{};
  lite::Tensor* H0{nullptr};
  lite::Tensor* C0{nullptr};
  bool use_peepholes;
  bool is_reverse;
  std::string gate_activation;
  std::string cell_activation;
  std::string candidate_activation;
};
1555

1556
struct CrfDecodingParam : ParamBase {
C
cc 已提交
1557 1558 1559 1560 1561 1562 1563
  lite::Tensor* emission{};
  lite::Tensor* transition{};
  lite::Tensor* label{};
  lite::Tensor* length{};
  lite::Tensor* viterbi_path{};
};

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
struct CtcAlignParam : ParamBase {
  lite::Tensor* input{};
  lite::Tensor* input_length{};
  lite::Tensor* output{};
  lite::Tensor* output_length{};
  int blank{0};
  bool merge_repeated{true};
  int padding_value{0};
};

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
struct XPUResNet50Param : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> filter;
  std::vector<lite::Tensor*> bias;
  std::vector<lite::Tensor*> max_filter;
  lite::Tensor* output{};
};

struct XPUMultiEncoderParam : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> fc_weight;
  std::vector<lite::Tensor*> fc_bias;
  std::vector<lite::Tensor*> ln_scale;
  std::vector<lite::Tensor*> ln_bias;
  lite::Tensor* fc_weight_max{};
  lite::Tensor* mask{};
  lite::Tensor* output{};

  int n_layers{};
  int head_num{};
  int size_per_head{};
  std::string act_type{};
1596
  std::string precision{};
1597 1598
};

C
Cwndmiao 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
struct XPUEmbeddingWithEltwiseAddParam : ParamBase {
  std::vector<lite::Tensor*> Ids;
  std::vector<lite::Tensor*> Tables;
  lite::Tensor* Out{};
  int64_t padding_idx{-1};
};

struct XPUFcParam : ParamBase {
  lite::Tensor* input{nullptr};
  lite::Tensor* w{nullptr};
  lite::Tensor* bias{nullptr};
  lite::Tensor* output{nullptr};

  int in_num_col_dims{1};
  lite::DDim in_mat_dims;
  float w_max{0.0f};
  bool transpose_w{true};
  std::string activation_type{""};
};

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
struct XPUResNetCbamParam : ParamBase {
  lite::Tensor* input{};
  std::vector<lite::Tensor*> filter;
  std::vector<lite::Tensor*> bias;
  std::vector<lite::Tensor*> max_filter;
  lite::Tensor* output{};

  float pool_p{1.0f};
};

struct XPUMmdnnSearchAttentionParam : ParamBase {
  lite::Tensor* X{};
  lite::Tensor* W{};
  lite::Tensor* b{};
  lite::Tensor* Out{};

  float W_max{0.0f};
  int pad_id{0};
  float alpha0{1.0f};
  float alpha1{1.0f};
  float mask{1.0f};
};

struct XPUMmdnnBidEmbGrnnAttParam : ParamBase {
  lite::Tensor* id0{};
  lite::Tensor* id1{};
  lite::Tensor* emb_tbl{};
  lite::Tensor* grnn_fw_wh{};
  lite::Tensor* grnn_fw_wi{};
  lite::Tensor* grnn_rv_wh{};
  lite::Tensor* grnn_rv_wi{};
  lite::Tensor* att_fc_w{};
  lite::Tensor* att_fc_b{};

  std::vector<float> grnn_fw_wh_maxs;
  std::vector<float> grnn_fw_wi_maxs;
  std::vector<float> grnn_rv_wh_maxs;
  std::vector<float> grnn_rv_wi_maxs;
  float att_fc_w_max{0.0f};

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
  lite::Tensor* grnn_fw_pool_out{};
  lite::Tensor* grnn_rv_pool_out{};
  lite::Tensor* att_pool_out{};
  lite::Tensor* concat_3in1_out{};
  lite::Tensor* emb_fw_out{};
};

struct XPUMmdnnBidEmbGrnnAttParam2 : ParamBase {
  lite::Tensor* id0{};
  lite::Tensor* id1{};
  lite::Tensor* emb_tbl{};
  lite::Tensor* grnn_fw_wh{};
  lite::Tensor* grnn_fw_wi{};
  lite::Tensor* grnn_rv_wh{};
  lite::Tensor* grnn_rv_wi{};
  lite::Tensor* att_fc_w{};
  lite::Tensor* att_fc_b{};

  std::vector<float> grnn_fw_wh_maxs;
  std::vector<float> grnn_fw_wi_maxs;
  std::vector<float> grnn_rv_wh_maxs;
  std::vector<float> grnn_rv_wi_maxs;
  float att_fc_w_max{0.0f};

  lite::Tensor* emb0_out{};
  lite::Tensor* grnn_fw_pool_out{};
  lite::Tensor* grnn_rv_pool_out{};
  lite::Tensor* att_pool_out{};
  lite::Tensor* concat_3in1_out{};
  lite::Tensor* emb_fw_out{};
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
};

struct XPUMmdnnBidEmbAttParam : ParamBase {
  lite::Tensor* id0{};
  lite::Tensor* id1{};
  lite::Tensor* emb_tbl{};
  lite::Tensor* att_fc_w{};
  lite::Tensor* att_fc_b{};

  float att_fc_w_max{0.0f};

1700 1701
  lite::Tensor* att_pool_out{};
  lite::Tensor* emb_fw_out{};
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
};

struct XPUMmdnnMatchConvTopkParam : ParamBase {
  lite::Tensor* input_x{};
  lite::Tensor* input_y{};
  lite::Tensor* input_w{};
  lite::Tensor* conv_w{};

  float input_w_max{0.0f};
  float conv_w_max{0.0f};
  std::vector<int> topks;
1713
  int output_channel{0};
1714 1715 1716 1717 1718 1719 1720 1721
  int channel_num{0};
  int dim_t{0};

  lite::Tensor* topk_out{};
};

struct XPUMmdnnMergeAllParam : ParamBase {
  std::vector<lite::Tensor*> concat_7in1_x;
1722
  std::vector<lite::Tensor*> concat_topk_x;
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
  lite::Tensor* grnn_fw_wh{};
  lite::Tensor* grnn_fw_wi{};
  lite::Tensor* grnn_rv_wh{};
  lite::Tensor* grnn_rv_wi{};
  lite::Tensor* fc0_w{};
  lite::Tensor* fc0_b{};
  lite::Tensor* fc1_w{};
  lite::Tensor* fc1_b{};
  lite::Tensor* fc2_w{};
  lite::Tensor* fc2_b{};

  std::vector<float> grnn_fw_wh_maxs;
  std::vector<float> grnn_fw_wi_maxs;
  std::vector<float> grnn_rv_wh_maxs;
  std::vector<float> grnn_rv_wi_maxs;
  float fc0_w_max{0.0f};
  float fc1_w_max{0.0f};
  float fc2_w_max{0.0f};

  lite::Tensor* out{};
};

H
HappyAngel 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
// For DeformableConvolution op
struct DeformableConvParam : ParamBase {
  lite::Tensor* x{};
  lite::Tensor* offset{};
  lite::Tensor* mask{};
  lite::Tensor* output{};
  int deformable_groups{1};
  int im2col_step{1};
  bool modulated{true};  // True-v2 False-v1
  std::string data_format{"Anylayout"};
  // convolution parameter
  ConvParam conv_param;
  // support var_length or not
  bool var_length{false};
  // only used in conv_transpose.
  std::vector<int> output_size;
  ///////////////////////////////////////////////////////////////////////////////////
  // get a vector of input tensors
  const std::vector<const Tensor*>* input_tensor_ptrs() override {
    if (!input_tensor_ptrs_cache_) {
      input_tensor_ptrs_cache_.reset(new std::vector<const Tensor*>({x}));
    }
    return input_tensor_ptrs_cache_.get();
  }
  // get a vector of output tensors
  std::vector<Tensor*>* output_tensor_ptrs() override {
    if (!output_tensor_ptrs_cache_) {
      output_tensor_ptrs_cache_.reset(new std::vector<lite::Tensor*>({output}));
    }
    return output_tensor_ptrs_cache_.get();
  }
};

1778 1779 1780 1781 1782
struct PixelShuffleParam : ParamBase {
  lite::Tensor* x{nullptr};
  lite::Tensor* output{nullptr};
  int upscale_factor{1};
};
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

struct RetinanetDetectionOutputParam : ParamBase {
  std::vector<Tensor*> bboxes{};
  std::vector<Tensor*> scores{};
  std::vector<Tensor*> anchors{};
  Tensor* im_info{};
  Tensor* out{};
  float score_threshold{};
  int nms_top_k{};
  float nms_threshold{};
  float nms_eta{};
  int keep_top_k{};
};

Y
yiicy 已提交
1797 1798 1799 1800 1801
struct WhereIndexParam : ParamBase {
  const lite::Tensor* input{nullptr};
  lite::Tensor* output{nullptr};
};

C
cc 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810
struct ClipParam : ParamBase {
  Tensor* x{};
  Tensor* min_tensor{};
  Tensor* max_tensor{};
  Tensor* out{};
  float min{};
  float max{};
};

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
struct PrintParam : ParamBase {
  const lite::Tensor* in{};
  lite::Tensor* out{};
  std::string name;
  int first_n{-1};
  std::string message;
  int summarize{20};
  bool print_tensor_name{true};
  bool print_tensor_type{true};
  bool print_tensor_shape{true};
  bool print_tensor_lod{true};
  bool print_tensor_layout{true};
  std::string print_phase;
  bool is_forward{true};
};

1827 1828 1829 1830 1831 1832 1833 1834 1835
struct OneHotParam : ParamBase {
  const lite::Tensor* X{};
  const lite::Tensor* depth_tensor{nullptr};
  lite::Tensor* Out{};
  int depth;
  int dtype;
  bool allow_out_of_range;
};

Y
Yan Chunwei 已提交
1836 1837 1838
}  // namespace operators
}  // namespace lite
}  // namespace paddle