program_optimize.cpp 9.4 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
liuruilong 已提交
15 16 17 18 19 20 21 22
#include "framework/program/program-optimize/program_optimize.h"
#include "framework/program/program-optimize/fusion_op_register.h"

namespace paddle_mobile {

namespace framework {

std::shared_ptr<ProgramDesc> ProgramOptimize::FushionOptimize(
L
liuruilong 已提交
23
    std::shared_ptr<ProgramDesc> ori_des, bool add_split) {
L
liuruilong 已提交
24 25 26
  //  ProgramDesc *optimize_program = new ProgramDesc(*ori_des);
  std::shared_ptr<ProgramDesc> optimize_program =
      std::make_shared<ProgramDesc>(*ori_des);
L
liuruilong 已提交
27
  current_block_ = optimize_program->Blocks().size();
L
liuruilong 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

  for (int i = 0; i < optimize_program->Blocks().size(); ++i) {
    std::unordered_map<std::string, std::shared_ptr<Node>> output_nodes;
    std::unordered_map<std::string, std::vector<std::shared_ptr<Node>>>
        type_map;

    std::shared_ptr<Node> begin_node;
    auto block = optimize_program->Block(i);
    //        DLOG << " ops size: " << block->Ops().size();
    for (int j = 0; j < block->Ops().size(); ++j) {
      auto op = block->Ops()[j];
      auto op_type = op->Type();
      if (op_input_output_key.find(op->Type()) == op_input_output_key.end()) {
        LOG(kLOG_ERROR) << "return null ";
        return nullptr;
      }

      std::shared_ptr<Node> node = std::make_shared<Node>(op);

      //
      type_map[op->Type()].push_back(node);

      if (j == 0) {
        begin_node = node;
      }

      auto input_keys = op_input_output_key.at(op->Type()).first;
      for (auto input_key : input_keys) {
        auto op_inputs = op->Input(input_key);
        for (int l = 0; l < op_inputs.size(); ++l) {
          std::string input_key = op_inputs[l];
          if (output_nodes.find(input_key) != output_nodes.end()) {
            auto input_node = output_nodes[input_key];
            *input_node > node;
          }
        }
      }

      auto output_keys = op_input_output_key.at(op_type).second;
      for (auto output_key : output_keys) {
        auto op_outputs = op->Output(output_key);
        for (int k = 0; k < op_outputs.size(); ++k) {
          output_nodes[op_outputs[k]] = node;
        }
      }
    }

    for (auto &registed : FusionOpRegister::Instance()->Matchers()) {
      std::string fusion_type = registed.first;
      std::shared_ptr<FusionOpMatcher> matcher = registed.second;
      //      DLOG << " registed node \n " << matcher->BeginNode();

      auto match_vector = type_map[matcher->BeginType()];

      for (auto &match_node : match_vector) {
        auto depth = matcher->BeginNode().Depth();
        auto sub_node = match_node->To(depth);
        //        DLOG << " sub node: " << *sub_node;
        if (*sub_node == matcher->BeginNode()) {
          //          DLOG << " match success " << " fusion node: \n" <<
          //          matcher->BeginNode() << "\nsub node: \n" << *sub_node;
          //          DLOG << "match node\n"<< *match_node;
L
liuruilong 已提交
90
          matcher->FolderNodes(match_node.get());
L
liuruilong 已提交
91 92 93 94 95 96 97 98
          //          DLOG << " after match node\n"<< *match_node;
          //          match_node->Description();

          //          DLOG << "begin node: \n" << *begin_node;
        }
      }
    }

L
liuruilong 已提交
99
    //    DLOG << "node: \n" << *begin_node;
L
liuruilong 已提交
100 101

    std::vector<std::shared_ptr<framework::OpDesc>> op_descs;
L
liuruilong 已提交
102
  //    bool can_splite = begin_node->CanSplit({G_OP_TYPE_CONV, G_OP_TYPE_BATCHNORM, G_OP_TYPE_DEPTHWISE_CONV});
L
liuruilong 已提交
103 104 105 106 107 108 109 110
    GenerateOps(&op_descs, begin_node.get());
    block->ops_ = op_descs;
  }

  for (int m = 0; m < new_blocks_.size(); ++m) {
    std::shared_ptr<BlockDesc> new_block = new_blocks_[m];
    new_block->index_ = m + ori_des->blocks_.size();
    optimize_program->blocks_.push_back(new_block);
L
liuruilong 已提交
111
  }
L
liuruilong 已提交
112
  return optimize_program;
L
liuruilong 已提交
113
}
L
liuruilong 已提交
114

L
liuruilong 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

void ProgramOptimize::GenerateOps(
        std::vector<std::shared_ptr<framework::OpDesc>> *op_desc, Node *input_node,
        Node *current_node) {

  if (current_node->inputs_.size() > 1 &&
      input_node != current_node->inputs_.back()) {
    return;
  } else if (current_node->inputs_.size() > 1 &&
             input_node == current_node->inputs_.back()) {
    op_desc->push_back(current_node->op_desc_);
  } else {
    op_desc->push_back(current_node->op_desc_);
  }

  for (int i = 0; i < current_node->outputs_.size(); ++i) {
    auto &output = current_node->outputs_[i];
    GenerateOps(op_desc, current_node, output.get());
  }

}

L
liuruilong 已提交
137 138 139 140
void ProgramOptimize::GenerateOps(
    std::vector<std::shared_ptr<framework::OpDesc>> *op_desc, Node *input_node,
    Node *current_node, bool adding_thread, int thread_num,
    std::shared_ptr<BlockDesc> new_block) {
L
liuruilong 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
  if (current_node->outputs_.size() > 1) {
    adding_thread = false;
  }

  bool can_add_split = false;
  // 如果当前节点有多个输出 并且 只有当前节点对应的 op_desc_ 输出数为 1 时支持
  if (current_node->outputs_.size() > 1 &&
      op_input_output_key[current_node->op_desc_->type_].second.size() == 1) {
    can_add_split = true;

    // 遍历当前节点的 output 节点
    for (const auto &output : current_node->outputs_) {
      // 不支持 output 有多个 output 的情况
      if (output->outputs_.size() > 1) {
        DLOG << "don't support multi output of output";
        can_add_split = false;
        break;
      }

      //与节点关联的 OpDesc
      std::shared_ptr<framework::OpDesc> &op_desc = output->op_desc_;

      //获取这个 op 的 inputs key 和 outputs key
      auto inputs_and_outputs = op_input_output_key[op_desc->type_];

      //判断现在 是否存在这个 op
      //判断这个 output 和 input key 的 size 等于 1
      if (op_input_output_key.find(op_desc->type_) !=
L
liuruilong 已提交
169
              op_input_output_key.end() &&
L
liuruilong 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
          inputs_and_outputs.first.size() == 1 &&
          inputs_and_outputs.second.size() == 1) {
        auto inputs_of_output = op_desc->Input(inputs_and_outputs.first[0]);
        auto outputs_of_output = op_desc->Output(inputs_and_outputs.second[0]);

        // 判断一下, 如果输入和输出没有同名, 是支持的
        for (int i = 0; i < inputs_of_output.size(); ++i) {
          std::string input_of_output = inputs_of_output[i];
          for (int j = 0; j < outputs_of_output.size(); ++j) {
            std::string output_of_output = outputs_of_output[j];
            if (input_of_output == output_of_output) {
              DLOG << "output的 output 包含 input" << input_of_output;
              can_add_split = false;
              break;
            }
          }
        }
      } else {  // 如果模型中包含没有的 op, 则不支持添加 split
        DLOG << "找不到 这个 op 类型: " << output->op_desc_->type_;
        can_add_split = false;
      }
    }
  }

L
liuruilong 已提交
194 195
  if (current_node->inputs_.size() > 1 &&
      input_node != current_node->inputs_.back()) {
L
liuruilong 已提交
196
    return;
L
liuruilong 已提交
197 198
  } else if (current_node->inputs_.size() > 1 &&
             input_node == current_node->inputs_.back()) {
L
liuruilong 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    new_block.reset();
    adding_thread = false;
    op_desc->push_back(current_node->op_desc_);
  } else {
    if (new_block.get() && adding_thread) {
      new_block->ops_.push_back(current_node->op_desc_);
    } else {
      op_desc->push_back(current_node->op_desc_);
    }
  }
  if (adding_thread) {
    Attribute attr;
    attr.Set<int>(thread_num);
    current_node->op_desc_->attrs_["thread"] = attr;
  }

  if (can_add_split) {
    new_block = std::make_shared<BlockDesc>();
    new_block->multi_thread_ = true;
    new_block->index_ = current_block_;
    new_blocks_.push_back(new_block);

    adding_thread = true;
L
liuruilong 已提交
222
    std::shared_ptr<OpDesc> split_op_desc = std::make_shared<OpDesc>();
L
liuruilong 已提交
223 224
    split_op_desc->type_ = G_OP_TYPE_SPLIT;
    auto outputs = current_node->op_desc_->Output(
L
liuruilong 已提交
225
        op_input_output_key[current_node->op_desc_->Type()].second[0]);
L
liuruilong 已提交
226
    split_op_desc->inputs_ = {
L
liuruilong 已提交
227
        {op_input_output_key[G_OP_TYPE_SPLIT].first[0], outputs}};
L
liuruilong 已提交
228
    auto &split_outputs =
L
liuruilong 已提交
229
        split_op_desc->outputs_[op_input_output_key[G_OP_TYPE_SPLIT].second[0]];
L
liuruilong 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    for (const auto &output : current_node->outputs_) {
      split_outputs.push_back(outputs[0]);
    }

    Attribute attr;
    attr.Set<int>(current_block_);
    split_op_desc->attrs_["block_id"] = attr;

    op_desc->push_back(split_op_desc);
    current_block_++;
  }

  for (int i = 0; i < current_node->outputs_.size(); ++i) {
    auto &output = current_node->outputs_[i];
    if (can_add_split) {
L
liuruilong 已提交
245 246
      GenerateOps(op_desc, current_node, output.get(), adding_thread, i,
                  new_block);
L
liuruilong 已提交
247
    } else {
L
liuruilong 已提交
248 249
      GenerateOps(op_desc, current_node, output.get(), adding_thread,
                  thread_num, new_block);
L
liuruilong 已提交
250 251 252 253
    }
  }
}

L
liuruilong 已提交
254 255 256 257 258 259
void ProgramOptimize::GenerateOps(
    std::vector<std::shared_ptr<framework::OpDesc>> *op_descs,
    Node *begin_node) {
  // std::vector<std::shared_ptr<framework::OpDesc>> *op_desc,
  //             Node *input_node, Node *current_node, bool adding_thread, int
  //             thread_num
L
liuruilong 已提交
260 261 262 263 264
  if (false) {
    this->GenerateOps(op_descs, begin_node, begin_node, false, -1, nullptr);
  } else {
    this->GenerateOps(op_descs, begin_node, begin_node);
  }
L
liuruilong 已提交
265 266
}

L
liuruilong 已提交
267 268
}  // namespace framework
}  // namespace paddle_mobile