io_copy_compute.cc 10.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/paddle_place.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/core/target_wrapper.h"
#include "lite/core/type_system.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace fpga {

using float16 = zynqmp::float16;

void CopyFromHostSync(void* target, const void* source, size_t size) {
  TargetWrapper<TARGET(kFPGA)>::MemcpySync(
      target, source, size, IoDirection::HtoD);
}

void CopyToHostSync(void* target, const void* source, size_t size) {
  TargetWrapper<TARGET(kFPGA)>::MemcpySync(
      target, source, size, IoDirection::DtoH);
}

/*
 * This kernel copies a tensor from host to FPGA space.
 */
class IoCopyHostToFpgaCompute
    : public KernelLite<TARGET(kFPGA), PRECISION(kAny), DATALAYOUT(kAny)> {
 public:
  void Run() override {
    auto& param = Param<operators::IoCopyParam>();
    CHECK(param.x->target() == TARGET(kHost) ||
          param.x->target() == TARGET(kFPGA));
C
chonwhite 已提交
48 49 50 51
    param.x->ZynqTensor()->flush();

    if (param.x->ZynqTensor()->dataType() == zynqmp::INT32) {
      param.y->mutable_data<int>();
52
      param.y->ZynqTensor()->copyFrom(param.x->ZynqTensor());
C
chonwhite 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
      return;
    }

    if (param.x->ZynqTensor()->dataType() == zynqmp::FP32) {
      param.y->mutable_data<float16>();
      if (param.x->ZynqTensor()->aligned() &&
          param.x->ZynqTensor()->shape().shouldAlign()) {
        zynqmp::Tensor tempTensor;
        tempTensor.mutableData<float16>(zynqmp::FP16,
                                        param.x->ZynqTensor()->shape());
        tempTensor.copyFrom(param.x->ZynqTensor());
        tempTensor.setAligned(true);
        tempTensor.unalignImage();
        param.y->ZynqTensor()->copyFrom(&tempTensor);
      } else {
        param.y->ZynqTensor()->copyFrom(param.x->ZynqTensor());
      }
      param.y->ZynqTensor()->invalidate();
      param.y->ZynqTensor()->copyScaleFrom(param.x->ZynqTensor());
72
    }
C
chonwhite 已提交
73

74 75
    auto out_lod = param.y->mutable_lod();
    *out_lod = param.x->lod();
Y
Yan Chunwei 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
  }

  std::unique_ptr<type_infer_handler_t> GetTypeInferHandler() override {
    std::unique_ptr<type_infer_handler_t> res(new type_infer_handler_t);
    *res = [](const std::map<std::string, const Type*>& inputs,
              const std::string& out) -> const Type* {
      CHECK(!inputs.empty());
      auto* type = inputs.at("Input");
      CHECK(type->target() == TARGET(kHost));

      auto out_place = type->place();
      out_place.target = TARGET(kFPGA);
      auto* out_type = Type::Get(type->id(),
                                 out_place.target,
                                 out_place.precision,
                                 out_place.layout,
                                 out_place.device);
      return out_type;
    };
    return res;
  }

  std::string doc() const override { return "Copy IO from HOST to FPGA"; }
};

/*
 * This kernel copies a tensor from FPGA to host space.
 */
class IoCopyFpgaToHostCompute
    : public KernelLite<TARGET(kFPGA), PRECISION(kAny), DATALAYOUT(kAny)> {
 public:
  void Run() override {
    auto& param = Param<operators::IoCopyParam>();
    CHECK(param.x->target() == TARGET(kHost) ||
          param.x->target() == TARGET(kFPGA));
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

    param.y->mutable_data<float>();
    param.y->ZynqTensor()->setDataType(zynqmp::FP32);
    param.x->ZynqTensor()->syncToDevice();

    if (param.x->ZynqTensor()->aligned() &&
        param.x->ZynqTensor()->shape().shouldAlign()) {
      zynqmp::Tensor tempTensor;
      tempTensor.mutableData<float16>(zynqmp::FP16,
                                      param.x->ZynqTensor()->shape());
      tempTensor.copyFrom(param.x->ZynqTensor());
      tempTensor.setAligned(true);
      tempTensor.unalignImage();
      param.y->ZynqTensor()->copyFrom(&tempTensor);
    } else {
      param.y->ZynqTensor()->copyFrom(param.x->ZynqTensor());
    }
    param.y->ZynqTensor()->copyScaleFrom(param.x->ZynqTensor());
    param.y->ZynqTensor()->flush();
    auto out_lod = param.y->mutable_lod();
    *out_lod = param.x->lod();
Y
Yan Chunwei 已提交
132
  }
C
chonwhite 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
  std::string doc() const override { return "Copy IO from FPGA to HOST"; }
};

void hwc_to_chw(float* chw_data,
                float* hwc_data,
                int num,
                int channel,
                int height,
                int width) {
  int chw = channel * height * width;
  int wc = width * channel;
  int wh = width * height;
  int index = 0;
  for (int n = 0; n < num; n++) {
    for (int h = 0; h < height; h++) {
      for (int w = 0; w < width; w++) {
        for (int c = 0; c < channel; c++) {
          chw_data[n * chw + c * wh + h * width + w] = hwc_data[index];
          index++;
        }
      }
    }
  }
}

class IoCopyFpgaToHostCHWCompute
    : public KernelLite<TARGET(kFPGA), PRECISION(kAny), DATALAYOUT(kAny)> {
 public:
  void Run() override {
    auto& param = Param<operators::IoCopyParam>();
    CHECK(param.x->target() == TARGET(kHost) ||
          param.x->target() == TARGET(kFPGA));

    Tensor hwc;
    hwc.Resize(param.y->dims());
    float* hwc_data = hwc.mutable_data<float>();

    float* chw_data = param.y->mutable_data<float>();
    param.y->ZynqTensor()->setDataType(zynqmp::FP32);
    param.x->ZynqTensor()->syncToDevice();

    if (param.x->ZynqTensor()->aligned() &&
        param.x->ZynqTensor()->shape().shouldAlign()) {
      zynqmp::Tensor tempTensor;
      tempTensor.mutableData<float16>(zynqmp::FP16,
                                      param.x->ZynqTensor()->shape());
      tempTensor.copyFrom(param.x->ZynqTensor());
      tempTensor.setAligned(true);
      tempTensor.unalignImage();
      hwc.ZynqTensor()->copyFrom(&tempTensor);
    } else {
      hwc.ZynqTensor()->copyFrom(param.x->ZynqTensor());
    }

    int num = 1;
    int channel = 1;
    int height = 1;
    int width = 1;
Y
Yan Chunwei 已提交
191

C
chonwhite 已提交
192
    auto dims = param.y->ZynqTensor()->shape();
Y
Yan Chunwei 已提交
193

C
chonwhite 已提交
194 195 196 197 198 199 200 201 202 203 204 205
    hwc_to_chw(chw_data,
               hwc_data,
               dims.num(),
               dims.channel(),
               dims.height(),
               dims.width());

    param.y->ZynqTensor()->copyScaleFrom(param.x->ZynqTensor());
    param.y->ZynqTensor()->flush();
    auto out_lod = param.y->mutable_lod();
    *out_lod = param.x->lod();
  }
Y
Yan Chunwei 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
  std::string doc() const override { return "Copy IO from FPGA to HOST"; }
};

}  // namespace fpga
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(io_copy,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyHostToFpgaCompute,
                     host_to_device)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kHost),
222 223
                                      PRECISION(kAny),
                                      DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
224 225
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
                                       PRECISION(kAny),
                                       DATALAYOUT(kAny))})
    .Finalize();

REGISTER_LITE_KERNEL(io_copy,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyHostToFpgaCompute,
                     host_to_device_any_any)
    .BindInput("Input",
               {LiteType::GetTensorTy(
                   TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNHWC))})
Y
Yan Chunwei 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255
    .Finalize();

REGISTER_LITE_KERNEL(io_copy,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyFpgaToHostCompute,
                     device_to_host)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
C
chonwhite 已提交
256
                {LiteType::GetTensorTy(TARGET(kHost),
257 258 259 260 261 262 263 264
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

REGISTER_LITE_KERNEL(io_copy,
                     kFPGA,
                     kAny,
                     kAny,
C
chonwhite 已提交
265
                     paddle::lite::kernels::fpga::IoCopyFpgaToHostCHWCompute,
C
chonwhite 已提交
266
                     device_to_host_chw)
267 268 269 270 271 272 273 274
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kARM),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNCHW))})
Y
Yan Chunwei 已提交
275 276 277 278 279 280 281 282 283 284
    .Finalize();

REGISTER_LITE_KERNEL(io_copy_once,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyHostToFpgaCompute,
                     host_to_device_once)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kHost),
285 286
                                      PRECISION(kAny),
                                      DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
287 288
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
289 290
                                       PRECISION(kAny),
                                       DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
291 292 293 294 295 296 297 298 299 300
    .Finalize();

REGISTER_LITE_KERNEL(io_copy_once,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyFpgaToHostCompute,
                     device_to_host_once)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kFPGA),
301 302
                                      PRECISION(kAny),
                                      DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
303 304 305 306 307
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kHost),
                                       PRECISION(kAny),
                                       DATALAYOUT(kAny))})
    .Finalize();