pad2d_image_compute.cc 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <string>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/logging.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {
class Pad2dCompute : public KernelLite<TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::Pad2dParam;

  std::string doc() const override {
    return "Pad2d using cl::Image2D(ImageDefault/RGBA), kFP16";
  }

  void PrepareForRun() override {
    pad2d_param_ = param_.get_mutable<param_t>();

    if (pad2d_param_->mode == "constant") {
      kernel_func_name_ = "pad2d_constant";
    } else if (pad2d_param_->mode == "reflect") {
      kernel_func_name_ = "pad2d_reflect";
    } else if (pad2d_param_->mode == "edge") {
      kernel_func_name_ = "pad2d_edge";
    } else {
      LOG(FATAL) << "Unknown mode type";
    }

    auto& context = ctx_->As<OpenCLContext>();
55 56 57 58
    context.cl_context()->AddKernel(kernel_func_name_,
                                    "image/pad2d_kernel.cl",
                                    build_options_,
                                    time_stamp_);
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
  }

  void Run() override {
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);

    auto* x = pad2d_param_->X;
    auto* out = pad2d_param_->Out;
    auto out_dims = out->dims();
    auto in_dims = x->dims();

    int in_h = in_dims[2];
    int in_w = in_dims[3];
    int out_h = out_dims[2];
    int out_w = out_dims[3];

76
#ifdef LITE_WITH_LOG
77 78 79 80
    VLOG(4) << "x->target():" << TargetToStr(x->target());
    VLOG(4) << "out->target():" << TargetToStr(out->target());
    VLOG(4) << "x->dims():" << in_dims;
    VLOG(4) << "out->dims():" << out_dims;
81
#endif
82 83 84 85 86 87 88

    auto out_image_shape = InitImageDimInfoWith(out_dims);
    auto* x_img = x->data<half_t, cl::Image2D>();

    auto* out_img = out->mutable_data<half_t, cl::Image2D>(
        out_image_shape["width"], out_image_shape["height"]);

89
#ifdef LITE_WITH_LOG
90 91 92 93 94
    VLOG(4) << "out_image_shape[w,h]: " << out_image_shape["width"] << " "
            << out_image_shape["height"];

    VLOG(4) << "in_h: " << in_h << ", in_w: " << in_w;
    VLOG(4) << "out_h: " << out_h << ", out_w: " << out_w;
95
#endif
96 97

    STL::stringstream kernel_key;
98
    kernel_key << kernel_func_name_ << build_options_ << time_stamp_;
99 100 101 102 103 104 105 106
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    auto default_work_size =
        DefaultWorkSize(out_dims,
                        DDim(std::vector<DDim::value_type>{
                            static_cast<int64_t>(out_image_shape["width"]),
                            static_cast<int64_t>(out_image_shape["height"])}));
107
#ifdef LITE_WITH_LOG
108 109
    VLOG(4) << "default_work_size: " << default_work_size[0] << ", "
            << default_work_size[1] << ", " << default_work_size[2];
110
#endif
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    int pad_h0 = pad2d_param_->paddings[0];
    int pad_h1 = pad2d_param_->paddings[1];
    int pad_w0 = pad2d_param_->paddings[2];
    int pad_w1 = pad2d_param_->paddings[3];
    float pad_value = pad2d_param_->pad_value;

    cl_int status = kernel.setArg(arg_idx++, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, *out_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, in_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, in_w);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, out_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, out_w);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, pad_h0);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, pad_h1);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, pad_w0);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, pad_w1);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, pad_value);
    CL_CHECK_FATAL(status);

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(default_work_size[0]),
                    static_cast<cl::size_type>(default_work_size[1]),
                    static_cast<cl::size_type>(default_work_size[2])};

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
X
xiebaiyuan 已提交
151
        nullptr);
152
    CL_CHECK_FATAL(status);
153
#ifdef LITE_WITH_LOG
154 155
    VLOG(4) << "global_work_size:[2D]:" << global_work_size[0] << " "
            << global_work_size[1] << " " << global_work_size[2];
156
#endif
157 158 159 160 161 162
  }

 protected:
  param_t* pad2d_param_{nullptr};
  std::string kernel_func_name_{};
  std::string build_options_{"-DCL_DTYPE_half"};
163
  std::string time_stamp_{GetTimeStamp()};
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

namespace ocl = paddle::lite::kernels::opencl;
REGISTER_LITE_KERNEL(
    pad2d, kOpenCL, kFP16, kImageDefault, ocl::Pad2dCompute, ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();