# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This file implement the GIN model. """ import numpy as np import paddle.fluid as fluid import paddle.fluid.layers as fl import pgl from pgl.layers.conv import gin class GINModel(object): """GINModel""" def __init__(self, args, gw, num_class): self.args = args self.num_layers = self.args.num_layers self.hidden_size = self.args.hidden_size self.train_eps = self.args.train_eps self.pool_type = self.args.pool_type self.dropout_prob = self.args.dropout_prob self.num_class = num_class self.gw = gw self.labels = fl.data(name="labels", shape=[None, 1], dtype="int64") def forward(self): """forward""" features_list = [self.gw.node_feat["attr"]] for i in range(self.num_layers): h = gin(self.gw, features_list[i], hidden_size=self.hidden_size, activation="relu", name="gin_%s" % (i), init_eps=0.0, train_eps=self.train_eps) h = fl.layer_norm( h, begin_norm_axis=1, param_attr=fluid.ParamAttr( name="norm_scale_%s" % (i), initializer=fluid.initializer.Constant(1.0)), bias_attr=fluid.ParamAttr( name="norm_bias_%s" % (i), initializer=fluid.initializer.Constant(0.0)), ) h = fl.relu(h) features_list.append(h) output = 0 for i, h in enumerate(features_list): pooled_h = pgl.layers.graph_pooling(self.gw, h, self.pool_type) drop_h = fl.dropout( pooled_h, self.dropout_prob, dropout_implementation="upscale_in_train") output += fl.fc(drop_h, size=self.num_class, act=None, param_attr=fluid.ParamAttr(name="final_fc_%s" % (i))) # calculate loss self.loss = fl.softmax_with_cross_entropy(output, self.labels) self.loss = fl.reduce_mean(self.loss) self.acc = fl.accuracy(fl.softmax(output), self.labels)