# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file implement the training process of GIN model. """ import os import sys import time import argparse import numpy as np import paddle.fluid as fluid import paddle.fluid.layers as fl import pgl from pgl.utils.logger import log from Dataset import GINDataset, fold10_split, random_split from dataloader import GraphDataloader from model import GINModel def main(args): """main function""" dataset = GINDataset( args.data_path, args.dataset_name, self_loop=not args.train_eps, degree_as_nlabel=True) train_dataset, test_dataset = fold10_split( dataset, fold_idx=args.fold_idx, seed=args.seed) train_loader = GraphDataloader(train_dataset, batch_size=args.batch_size) test_loader = GraphDataloader( test_dataset, batch_size=args.batch_size, shuffle=False) place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace() train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): gw = pgl.graph_wrapper.GraphWrapper( "gw", place=place, node_feat=dataset[0][0].node_feat_info()) model = GINModel(args, gw, dataset.gclasses) model.forward() infer_program = train_program.clone(for_test=True) with fluid.program_guard(train_program, startup_program): epoch_step = int(len(train_dataset) / args.batch_size) + 1 boundaries = [ i for i in range(50 * epoch_step, args.epochs * epoch_step, epoch_step * 50) ] values = [args.lr * 0.5**i for i in range(0, len(boundaries) + 1)] lr = fl.piecewise_decay(boundaries=boundaries, values=values) train_op = fluid.optimizer.Adam(lr).minimize(model.loss) exe = fluid.Executor(place) exe.run(startup_program) # train and evaluate global_step = 0 for epoch in range(1, args.epochs + 1): for idx, batch_data in enumerate(train_loader): g, labels = batch_data feed_dict = gw.to_feed(g) feed_dict['labels'] = labels ret_loss, ret_lr, ret_acc = exe.run( train_program, feed=feed_dict, fetch_list=[model.loss, lr, model.acc]) global_step += 1 if global_step % 10 == 0: message = "epoch %d | step %d | " % (epoch, global_step) message += "lr %.6f | loss %.6f | acc %.4f" % ( ret_lr, ret_loss, ret_acc) log.info(message) # evaluate result = evaluate(exe, infer_program, model, gw, test_loader) message = "evaluating result" for key, value in result.items(): message += " | %s %.6f" % (key, value) log.info(message) def evaluate(exe, prog, model, gw, loader): """evaluate""" total_loss = [] total_acc = [] for idx, batch_data in enumerate(loader): g, labels = batch_data feed_dict = gw.to_feed(g) feed_dict['labels'] = labels ret_loss, ret_acc = exe.run(prog, feed=feed_dict, fetch_list=[model.loss, model.acc]) total_loss.append(ret_loss) total_acc.append(ret_acc) total_loss = np.mean(total_loss) total_acc = np.mean(total_acc) return {"loss": total_loss, "acc": total_acc} if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--data_path', type=str, default='./dataset') parser.add_argument('--dataset_name', type=str, default='MUTAG') parser.add_argument('--batch_size', type=int, default=32) parser.add_argument('--fold_idx', type=int, default=0) parser.add_argument('--output_path', type=str, default='./outputs/') parser.add_argument('--use_cuda', action='store_true') parser.add_argument('--num_layers', type=int, default=5) parser.add_argument('--num_mlp_layers', type=int, default=2) parser.add_argument('--hidden_size', type=int, default=64) parser.add_argument( '--pool_type', type=str, default="sum", choices=["sum", "average", "max"]) parser.add_argument('--train_eps', action='store_true') parser.add_argument('--epochs', type=int, default=350) parser.add_argument('--lr', type=float, default=0.01) parser.add_argument('--dropout_prob', type=float, default=0.5) parser.add_argument('--seed', type=int, default=0) args = parser.parse_args() log.info(args) if not os.path.exists(args.output_path): os.makedirs(args.output_path) main(args)