# graph data config edge_path: "./data/data_processed" edge_files: "p2a:paper_author.txt,p2c:paper_conference.txt,p2t:paper_type.txt" node_types_file: "node_types.txt" num_nodes: 37791 symmetry: True # skipgram pair data config win_size: 5 neg_num: 5 # average; m2v_plus neg_sample_type: "average" # random walk config # m2v; multi_m2v; walk_mode: "m2v" meta_path: "c2p-p2a-a2p-p2c" first_node_type: "c" walk_len: 24 batch_size: 4 node_shuffle: True node_files: null num_sample_workers: 2 # model config embed_dim: 64 is_sparse: True # only use when num_nodes > 100,000,000, slower than noraml embedding is_distributed: False # trainging config epochs: 10 optimizer: "sgd" lr: 0.1 warm_start_from_dir: null walkpath_files: "None" train_files: "None" steps_per_save: 1000 save_path: "./checkpoints" log_dir: "./logs" CPU_NUM: 16