# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This package implement graph sampling algorithm. """ import time import copy import numpy as np import pgl from pgl.utils.logger import log from pgl import graph_kernel __all__ = [ 'graphsage_sample', 'node2vec_sample', 'deepwalk_sample', 'metapath_randomwalk', 'pinsage_sample' ] def traverse(item): """traverse the list or numpy""" if isinstance(item, list) or isinstance(item, np.ndarray): for i in iter(item): for j in traverse(i): yield j else: yield item def flat_node_and_edge(nodes, eids, weights=None): """flatten the sub-lists to one list""" nodes = list(set(traverse(nodes))) eids = list(traverse(eids)) if weights is not None: weights = list(traverse(weights)) return nodes, eids, weights def edge_hash(src, dst): """edge_hash """ return src * 100000007 + dst def graphsage_sample(graph, nodes, samples, ignore_edges=[]): """Implement of graphsage sample. Reference paper: https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf. Args: graph: A pgl graph instance nodes: Sample starting from nodes samples: A list, number of neighbors in each layer ignore_edges: list of edge(src, dst) will be ignored. Return: A list of subgraphs """ start = time.time() num_layers = len(samples) start_nodes = nodes nodes = list(start_nodes) eids, edges = [], [] nodes_set = set(nodes) layer_nodes, layer_eids, layer_edges = [], [], [] ignore_edge_set = set([edge_hash(src, dst) for src, dst in ignore_edges]) for layer_idx in reversed(range(num_layers)): if len(start_nodes) == 0: layer_nodes = [nodes] + layer_nodes layer_eids = [eids] + layer_eids layer_edges = [edges] + layer_edges continue batch_pred_nodes, batch_pred_eids = graph.sample_predecessor( start_nodes, samples[layer_idx], return_eids=True) start = time.time() last_nodes_set = nodes_set nodes, eids = copy.copy(nodes), copy.copy(eids) edges = copy.copy(edges) nodes_set, eids_set = set(nodes), set(eids) for srcs, dst, pred_eids in zip(batch_pred_nodes, start_nodes, batch_pred_eids): for src, eid in zip(srcs, pred_eids): if edge_hash(src, dst) in ignore_edge_set: continue if eid not in eids_set: eids.append(eid) edges.append([src, dst]) eids_set.add(eid) if src not in nodes_set: nodes.append(src) nodes_set.add(src) layer_edges = [edges] + layer_edges start_nodes = list(nodes_set - last_nodes_set) layer_nodes = [nodes] + layer_nodes layer_eids = [eids] + layer_eids start = time.time() # Find new nodes feed_dict = {} subgraphs = [] for i in range(num_layers): subgraphs.append( graph.subgraph( nodes=layer_nodes[0], eid=layer_eids[i], edges=layer_edges[i])) # only for this task subgraphs[i].node_feat["index"] = np.array( layer_nodes[0], dtype="int64") return subgraphs def alias_sample(size, alias, events): """Implement of alias sample. Args: size: Output shape. alias: The alias table build by `alias_sample_build_table`. events: The events table build by `alias_sample_build_table`. Return: samples: The generated random samples. """ rand_num = np.random.uniform(0.0, len(alias), size) idx = rand_num.astype("int64") uni = rand_num - idx flags = (uni >= alias[idx]) idx[flags] = events[idx][flags] return idx def graph_alias_sample_table(graph, edge_weight_name): """Build alias sample table for weighted deepwalk. Args: graph: The input graph edge_weight_name: The name of edge weight in edge_feat. Return: Alias sample tables for each nodes. """ edge_weight = graph.edge_feat[edge_weight_name] _, eids_array = graph.successor(return_eids=True) alias_array, events_array = [], [] for eids in eids_array: probs = edge_weight[eids] probs /= np.sum(probs) alias, events = graph_kernel.alias_sample_build_table(probs) alias_array.append(alias), events_array.append(events) alias_array, events_array = np.array(alias_array), np.array(events_array) return alias_array, events_array def deepwalk_sample(graph, nodes, max_depth, alias_name=None, events_name=None): """Implement of random walk. This function get random walks path for given nodes and depth. Args: nodes: Walk starting from nodes max_depth: Max walking depth Return: A list of walks. """ walk = [] # init for node in nodes: walk.append([node]) cur_walk_ids = np.arange(0, len(nodes)) cur_nodes = np.array(nodes) for l in range(max_depth): # select the walks not end cur_succs = graph.successor(cur_nodes) mask = [len(succ) > 0 for succ in cur_succs] if np.any(mask): cur_walk_ids = cur_walk_ids[mask] cur_nodes = cur_nodes[mask] cur_succs = cur_succs[mask] else: # stop when all nodes have no successor break if alias_name is not None and events_name is not None: sample_index = [ alias_sample([1], graph.node_feat[alias_name][node], graph.node_feat[events_name][node])[0] for node in cur_nodes ] else: outdegree = [len(cur_succ) for cur_succ in cur_succs] sample_index = np.floor( np.random.rand(cur_succs.shape[0]) * outdegree).astype("int64") nxt_cur_nodes = [] for s, ind, walk_id in zip(cur_succs, sample_index, cur_walk_ids): walk[walk_id].append(s[ind]) nxt_cur_nodes.append(s[ind]) cur_nodes = np.array(nxt_cur_nodes) return walk def node2vec_sample(graph, nodes, max_depth, p=1.0, q=1.0): """Implement of node2vec random walk. Reference paper: https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf. Args: graph: A pgl graph instance nodes: Walk starting from nodes max_depth: Max walking depth p: Return parameter q: In-out parameter Return: A list of walks. """ if p == 1.0 and q == 1.0: return deepwalk_sample(graph, nodes, max_depth) walk = [] # init for node in nodes: walk.append([node]) cur_walk_ids = np.arange(0, len(nodes)) cur_nodes = np.array(nodes) prev_nodes = np.array([-1] * len(nodes), dtype="int64") prev_succs = np.array([[]] * len(nodes), dtype="int64") for l in range(max_depth): # select the walks not end cur_succs = graph.successor(cur_nodes) mask = [len(succ) > 0 for succ in cur_succs] if np.any(mask): cur_walk_ids = cur_walk_ids[mask] cur_nodes = cur_nodes[mask] prev_nodes = prev_nodes[mask] prev_succs = prev_succs[mask] cur_succs = cur_succs[mask] else: # stop when all nodes have no successor break num_nodes = cur_nodes.shape[0] nxt_nodes = np.zeros(num_nodes, dtype="int64") for idx, ( succ, prev_succ, walk_id, prev_node ) in enumerate(zip(cur_succs, prev_succs, cur_walk_ids, prev_nodes)): sampled_succ = graph_kernel.node2vec_sample(succ, prev_succ, prev_node, p, q) walk[walk_id].append(sampled_succ) nxt_nodes[idx] = sampled_succ prev_nodes, prev_succs = cur_nodes, cur_succs cur_nodes = nxt_nodes return walk def metapath_randomwalk(graph, start_nodes, metapath, walk_length, alias_name=None, events_name=None): """Implementation of metapath random walk in heterogeneous graph. Args: graph: instance of pgl heterogeneous graph start_nodes: start nodes to generate walk metapath: meta path for sample nodes. e.g: "c2p-p2a-a2p-p2c" walk_length: the walk length Return: a list of metapath walks. """ edge_types = metapath.split('-') walk = [] for node in start_nodes: walk.append([node]) cur_walk_ids = np.arange(0, len(start_nodes)) cur_nodes = np.array(start_nodes) mp_len = len(edge_types) for i in range(0, walk_length - 1): g = graph[edge_types[i % mp_len]] cur_succs = g.successor(cur_nodes) mask = [len(succ) > 0 for succ in cur_succs] if np.any(mask): cur_walk_ids = cur_walk_ids[mask] cur_nodes = cur_nodes[mask] cur_succs = cur_succs[mask] else: # stop when all nodes have no successor break if alias_name is not None and events_name is not None: sample_index = [ alias_sample([1], g.node_feat[alias_name][node], g.node_feat[events_name][node])[0] for node in cur_nodes ] else: outdegree = [len(cur_succ) for cur_succ in cur_succs] sample_index = np.floor( np.random.rand(cur_succs.shape[0]) * outdegree).astype("int64") nxt_cur_nodes = [] for s, ind, walk_id in zip(cur_succs, sample_index, cur_walk_ids): walk[walk_id].append(s[ind]) nxt_cur_nodes.append(s[ind]) cur_nodes = np.array(nxt_cur_nodes) return walk def random_walk_with_start_prob(graph, nodes, max_depth, proba=0.5): """Implement of random walk with the probability of returning the origin node. This function get random walks path for given nodes and depth. Args: nodes: Walk starting from nodes max_depth: Max walking depth proba: the proba to return the origin node Return: A list of walks. """ walk = [] # init for node in nodes: walk.append([node]) walk_ids = np.arange(0, len(nodes)) cur_nodes = np.array(nodes) nodes = np.array(nodes) for l in range(max_depth): # select the walks not end if l >= 1: return_proba = np.random.rand(cur_nodes.shape[0]) proba_mask = (return_proba < proba) cur_nodes[proba_mask] = nodes[proba_mask] outdegree = graph.outdegree(cur_nodes) mask = (outdegree != 0) if np.any(mask): cur_walk_ids = walk_ids[mask] outdegree = outdegree[mask] else: # stop when all nodes have no successor, wait start next loop to get precesssor continue succ = graph.successor(cur_nodes[mask]) sample_index = np.floor( np.random.rand(outdegree.shape[0]) * outdegree).astype("int64") nxt_cur_nodes = cur_nodes for s, ind, walk_id in zip(succ, sample_index, cur_walk_ids): walk[walk_id].append(s[ind]) nxt_cur_nodes[walk_id] = s[ind] cur_nodes = np.array(nxt_cur_nodes) return walk def pinsage_sample(graph, nodes, samples, top_k=10, proba=0.5, norm_bais=1.0, ignore_edges=set()): """Implement of graphsage sample. Reference paper: . Args: graph: A pgl graph instance nodes: Sample starting from nodes samples: A list, number of neighbors in each layer top_k: select the top_k visit count nodes to construct the edges proba: the probability to return the origin node norm_bais: the normlization for the visit count ignore_edges: list of edge(src, dst) will be ignored. Return: A list of subgraphs """ start = time.time() num_layers = len(samples) start_nodes = nodes edges, weights = [], [] layer_nodes, layer_edges, layer_weights = [], [], [] ignore_edge_set = set([edge_hash(src, dst) for src, dst in ignore_edges]) for layer_idx in reversed(range(num_layers)): if len(start_nodes) == 0: layer_nodes = [nodes] + layer_nodes layer_edges = [edges] + layer_edges layer_edges_weight = [weights] + layer_weights continue walks = random_walk_with_start_prob( graph, start_nodes, samples[layer_idx], proba=proba) walks = [walk[1:] for walk in walks] pred_edges = [] pred_weights = [] pred_nodes = [] for node, walk in zip(start_nodes, walks): walk_nodes = [] walk_weights = [] count_sum = 0 for random_walk_node in walk: if len(ignore_edge_set) > 0 and random_walk_node != node and \ edge_hash(random_walk_node, node) in ignore_edge_set: continue walk_nodes.append(random_walk_node) unique, counts = np.unique(walk_nodes, return_counts=True) frequencies = np.asarray((unique, counts)).T frequencies = frequencies[np.argsort(frequencies[:, 1])] frequencies = frequencies[-1 * top_k:, :] for random_walk_node, random_count in zip( frequencies[:, 0].tolist(), frequencies[:, 1].tolist()): pred_nodes.append(random_walk_node) pred_edges.append((random_walk_node, node)) walk_weights.append(random_count) count_sum += random_count count_sum += len(walk_weights) * norm_bais walk_weights = (np.array(walk_weights) + norm_bais) / (count_sum) pred_weights.extend(walk_weights.tolist()) last_node_set = set(nodes) nodes, edges, weights = flat_node_and_edge([nodes, pred_nodes], \ [edges, pred_edges], [weights, pred_weights]) layer_edges = [edges] + layer_edges layer_weights = [weights] + layer_weights layer_nodes = [nodes] + layer_nodes start_nodes = list(set(nodes) - last_node_set) start = time.time() feed_dict = {} subgraphs = [] for i in range(num_layers): edge_feat_dict = { "weight": np.array( layer_weights[i], dtype='float32') } subgraphs.append( graph.subgraph( nodes=layer_nodes[0], edges=layer_edges[i], edge_feats=edge_feat_dict)) subgraphs[i].node_feat["index"] = np.array( layer_nodes[0], dtype="int64") return subgraphs def graph_saint_random_walk_sample(graph, nodes, max_depth, alias_name=None, events_name=None): """Implement of graph saint random walk sample. First, this function will get random walks path for given nodes and depth. Then, it will create subgraph from all sampled nodes. Reference Paper: https://arxiv.org/abs/1907.04931 Args: graph: A pgl graph instance nodes: Walk starting from nodes max_depth: Max walking depth Return: a subgraph of sampled nodes. """ graph.indegree() walks = deepwalk_sample(graph, nodes, max_depth, alias_name, events_name) sample_nodes = [] for walk in walks: sample_nodes.extend(walk) sample_nodes = np.unique(sample_nodes) eids = graph_kernel.adj_extract(graph._adj_dst_index._indptr, graph._adj_dst_index._sorted_v, sample_nodes) subgraph = graph.subgraph( nodes=sample_nodes, eid=eids, with_node_feat=True, with_edge_feat=True) subgraph.node_feat["index"] = np.array(sample_nodes, dtype="int64") return subgraph