# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import argparse import traceback import yaml import numpy as np from easydict import EasyDict as edict from pgl.utils.logger import log from pgl.utils import paddle_helper from learner import Learner from models.model import LinkPredictModel from models.model import NodeClassificationModel from dataset.graph_reader import NodeClassificationGenerator class TrainData(object): def __init__(self, graph_work_path): trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0")) trainer_count = int(os.getenv("PADDLE_TRAINERS_NUM", "1")) log.info("trainer_id: %s, trainer_count: %s." % (trainer_id, trainer_count)) edges = np.load(os.path.join(graph_work_path, "train_data.npy"), allow_pickle=True) # edges is bidirectional. train_node = edges[trainer_id::trainer_count, 0] train_label = edges[trainer_id::trainer_count, 1] returns = { "train_data": [train_node, train_label] } log.info("Load train_data done.") self.data = returns def __getitem__(self, index): return [data[index] for data in self.data["train_data"]] def __len__(self): return len(self.data["train_data"][0]) def main(config): # Select Model model = NodeClassificationModel(config) # Build Train Edges data = TrainData(config.graph_work_path) # Build Train Data train_iter = NodeClassificationGenerator( graph_wrappers=model.graph_wrappers, batch_size=config.batch_size, data=data, samples=config.samples, num_workers=config.sample_workers, feed_name_list=[var.name for var in model.feed_list], use_pyreader=config.use_pyreader, phase="train", graph_data_path=config.graph_work_path, shuffle=True, neg_type=config.neg_type) log.info("build graph reader done.") learner = Learner.factory(config.learner_type) learner.build(model, train_iter, config) learner.start() learner.stop() if __name__ == "__main__": parser = argparse.ArgumentParser(description='main') parser.add_argument("--conf", type=str, default="./config.yaml") args = parser.parse_args() config = edict(yaml.load(open(args.conf), Loader=yaml.FullLoader)) print(config) main(config)