# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file implement the training process of metapath2vec model. """ import os import sys import argparse import time import numpy as np import logging import pickle as pkl import shutil import glob import pgl from pgl.utils import paddle_helper import paddle import paddle.fluid as fluid import paddle.fluid.layers as fl from utils import * import Dataset import model as Models from pgl.utils import mp_reader from sklearn.metrics import (auc, f1_score, precision_recall_curve, roc_auc_score) def set_seed(seed): """Set global random seed.""" random.seed(seed) np.random.seed(seed) def save_param(dirname, var_name_list): """save_param""" if not os.path.exists(dirname): os.makedirs(dirname) for var_name in var_name_list: var = fluid.global_scope().find_var(var_name) var_tensor = var.get_tensor() np.save(os.path.join(dirname, var_name + '.npy'), np.array(var_tensor)) def multiprocess_data_generator(config, dataset): """Using multiprocess to generate training data. """ num_sample_workers = config['trainer']['args']['num_sample_workers'] walkpath_files = [[] for i in range(num_sample_workers)] for idx, f in enumerate(glob.glob(dataset.walk_files)): walkpath_files[idx % num_sample_workers].append(f) gen_data_pool = [ dataset.pairs_generator(files) for files in walkpath_files ] if num_sample_workers == 1: gen_data_func = gen_data_pool[0] else: gen_data_func = mp_reader.multiprocess_reader( gen_data_pool, use_pipe=True, queue_size=100) return gen_data_func def run_epoch(epoch, config, data_generator, train_prog, model, feed_dict, exe, for_test=False): """Run training process of every epoch. """ total_loss = [] for idx, batch_data in enumerate(data_generator()): feed_dict['train_inputs'] = batch_data['src'] feed_dict['train_labels'] = batch_data['pos'] feed_dict['train_negs'] = batch_data['negs'] loss, lr = exe.run(train_prog, feed=feed_dict, fetch_list=[model.loss, model.lr], return_numpy=True) total_loss.append(loss[0]) if (idx + 1) % 500 == 0: avg_loss = np.mean(total_loss) logging.info("epoch %d | step %d | lr %.4f | train_loss %f " % (epoch, idx + 1, lr, avg_loss)) total_loss = [] def main(config): """main function for training metapath2vec model. """ logging.info(config) set_seed(config['seed']) dataset = getattr( Dataset, config['data_loader']['type'])(config['data_loader']['args']) data_generator = multiprocess_data_generator(config, dataset) # move word2id file to checkpoints directory src_word2id_file = dataset.word2id_file dst_wor2id_file = config['trainer']['args']['save_dir'] + config[ 'data_loader']['args']['word2id_file'] logging.info('backup word2id file to %s' % dst_wor2id_file) shutil.move(src_word2id_file, dst_wor2id_file) place = fluid.CUDAPlace(0) if config['use_cuda'] else fluid.CPUPlace() train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): model = getattr(Models, config['model']['type'])( dataset=dataset, config=config['model']['args'], place=place) with fluid.program_guard(train_program, startup_program): global_steps = int(dataset.sentences_count * config['trainer']['args']['epochs'] / config['data_loader']['args']['batch_size']) model.backward(global_steps, config['optimizer']['args']) # train exe = fluid.Executor(place) exe.run(startup_program) feed_dict = {} logging.info('training...') for epoch in range(1, 1 + config['trainer']['args']['epochs']): run_epoch(epoch, config['trainer']['args'], data_generator, train_program, model, feed_dict, exe) logging.info('saving model...') cur_save_path = os.path.join(config['trainer']['args']['save_dir'], "model_epoch%d" % (epoch)) save_param(cur_save_path, ['content']) logging.info('finishing training') if __name__ == "__main__": parser = argparse.ArgumentParser(description='metapath2vec') parser.add_argument( '-c', '--config', default=None, type=str, help='config file path (default: None)') parser.add_argument( '-n', '--taskname', default=None, type=str, help='task name(default: None)') args = parser.parse_args() if args.config: # load config file config = Config(args.config, isCreate=True, isSave=True) config = config() else: raise AssertionError( "Configuration file need to be specified. Add '-c config.yaml', for example." ) log_format = '%(asctime)s-%(levelname)s-%(name)s: %(message)s' logging.basicConfig( level=getattr(logging, config['log_level'].upper()), format=log_format) main(config)