# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """test_dataloader""" import time import unittest import json import os from pgl.utils.data.dataset import Dataset, StreamDataset from pgl.utils.data.dataloader import Dataloader DATA_SIZE = 20 class ListDataset(Dataset): def __init__(self): self.dataset = list(range(0, DATA_SIZE)) def __getitem__(self, idx): return self._transform(self.dataset[idx]) def __len__(self): return len(self.dataset) def _transform(self, example): return example class IterDataset(StreamDataset): def __init__(self): self.dataset = list(range(0, DATA_SIZE)) def __iter__(self): for data in self.dataset: yield data class Collate_fn(object): def __init__(self, config): self.config = config def __call__(self, batch_examples): feed_dict = {} feed_dict['data'] = batch_examples feed_dict['labels'] = [i for i in range(len(batch_examples))] return feed_dict class DataloaderTest(unittest.TestCase): def test_ListDataset(self): config = { 'batch_size': 3, 'drop_last': True, 'shuffle': True, 'num_workers': 2, } collate_fn = Collate_fn(config) ds = ListDataset() # test batch_size loader = Dataloader( ds, batch_size=config['batch_size'], drop_last=config['drop_last'], num_workers=config['num_workers'], collate_fn=collate_fn) epochs = 1 for e in range(epochs): res = [] for batch_data in loader: res.extend(batch_data['data']) self.assertEqual(len(batch_data['data']), config['batch_size']) # test shuffle loader = Dataloader( ds, batch_size=3, drop_last=False, num_workers=1, collate_fn=collate_fn) for e in range(epochs): res = [] for batch_data in loader: res.extend(batch_data['data']) self.assertEqual(set([i for i in range(DATA_SIZE)]), set(res)) def test_IterDataset(self): config = { 'batch_size': 3, 'drop_last': True, 'num_workers': 2, } collate_fn = Collate_fn(config) ds = IterDataset() loader = Dataloader( ds, batch_size=config['batch_size'], drop_last=config['drop_last'], num_workers=config['num_workers'], collate_fn=collate_fn) epochs = 1 for e in range(epochs): res = [] for batch_data in loader: res.extend(batch_data['data']) self.assertEqual(len(batch_data['data']), config['batch_size']) # test shuffle loader = Dataloader( ds, batch_size=3, drop_last=False, num_workers=1, collate_fn=collate_fn) for e in range(epochs): res = [] for batch_data in loader: res.extend(batch_data['data']) self.assertEqual(set([i for i in range(DATA_SIZE)]), set(res)) if __name__ == "__main__": unittest.main()