device=3 CUDA_VISIBLE_DEVICES=$device \ FLAGS_fraction_of_gpu_memory_to_use=0.01 \ python main.py \ --use_cuda \ --model TransE \ --data_dir ./data/FB15k \ --optimizer adam \ --batch_size=1024 \ --learning_rate=0.001 \ --epoch 200 \ --evaluate_per_iteration 200 \ --sample_workers 1 \ --margin 1.0 \ --nofilter True \ --neg_times 10 \ --neg_mode True #--only_evaluate # TransE FB15k # -----Raw-Average-Results # MeanRank: 214.94, MRR: 0.2051, Hits@1: 0.0929, Hits@3: 0.2343, Hits@10: 0.4458 # -----Filter-Average-Results # MeanRank: 74.41, MRR: 0.3793, Hits@1: 0.2351, Hits@3: 0.4538, Hits@10: 0.6570 CUDA_VISIBLE_DEVICES=$device \ FLAGS_fraction_of_gpu_memory_to_use=0.01 \ python main.py \ --use_cuda \ --model TransE \ --data_dir ./data/WN18 \ --optimizer adam \ --batch_size=1024 \ --learning_rate=0.001 \ --epoch 100 \ --evaluate_per_iteration 100 \ --sample_workers 1 \ --margin 4 \ --nofilter True \ --neg_times 10 \ --neg_mode True # TransE WN18 # -----Raw-Average-Results # MeanRank: 219.08, MRR: 0.3383, Hits@1: 0.0821, Hits@3: 0.5233, Hits@10: 0.7997 # -----Filter-Average-Results # MeanRank: 207.72, MRR: 0.4631, Hits@1: 0.1349, Hits@3: 0.7708, Hits@10: 0.9315 #for prertrain CUDA_VISIBLE_DEVICES=$device \ FLAGS_fraction_of_gpu_memory_to_use=0.01 \ python main.py \ --use_cuda \ --model TransE \ --data_dir ./data/FB15k \ --optimizer adam \ --batch_size=512 \ --learning_rate=0.001 \ --epoch 30 \ --evaluate_per_iteration 30 \ --sample_workers 1 \ --margin 2.0 \ --nofilter True \ --noeval True \ --neg_times 10 \ --neg_mode True && \ CUDA_VISIBLE_DEVICES=$device \ FLAGS_fraction_of_gpu_memory_to_use=0.01 \ python main.py \ --use_cuda \ --model TransR \ --data_dir ./data/FB15k \ --optimizer adam \ --batch_size=512 \ --learning_rate=0.001 \ --epoch 200 \ --evaluate_per_iteration 200 \ --sample_workers 1 \ --margin 2.0 \ --pretrain True \ --nofilter True \ --neg_times 10 \ --neg_mode True # FB15k TransR 200, pretrain 20 # -----Raw-Average-Results # MeanRank: 303.81, MRR: 0.1931, Hits@1: 0.0920, Hits@3: 0.2109, Hits@10: 0.4181 # -----Filter-Average-Results # MeanRank: 156.30, MRR: 0.3663, Hits@1: 0.2318, Hits@3: 0.4352, Hits@10: 0.6231 # for pretrain CUDA_VISIBLE_DEVICES=$device \ FLAGS_fraction_of_gpu_memory_to_use=0.01 \ python main.py \ --use_cuda \ --model TransE \ --data_dir ./data/WN18 \ --optimizer adam \ --batch_size=512 \ --learning_rate=0.001 \ --epoch 30 \ --evaluate_per_iteration 30 \ --sample_workers 1 \ --margin 4.0 \ --nofilter True \ --noeval True \ --neg_times 10 \ --neg_mode True && \ CUDA_VISIBLE_DEVICES=$device \ FLAGS_fraction_of_gpu_memory_to_use=0.01 \ python main.py \ --use_cuda \ --model TransR \ --data_dir ./data/WN18 \ --optimizer adam \ --batch_size=512 \ --learning_rate=0.001 \ --epoch 100 \ --evaluate_per_iteration 100 \ --sample_workers 1 \ --margin 4.0 \ --pretrain True \ --nofilter True \ --neg_times 10 \ --neg_mode True # TransR WN18 100, pretrain 30 # -----Raw-Average-Results # MeanRank: 321.41, MRR: 0.3706, Hits@1: 0.0955, Hits@3: 0.5906, Hits@10: 0.8099 # -----Filter-Average-Results # MeanRank: 309.15, MRR: 0.5126, Hits@1: 0.1584, Hits@3: 0.8601, Hits@10: 0.9409 CUDA_VISIBLE_DEVICES=$device \ FLAGS_fraction_of_gpu_memory_to_use=0.01 \ python main.py \ --use_cuda \ --model RotatE \ --data_dir ./data/FB15k \ --optimizer adam \ --batch_size=512 \ --learning_rate=0.001 \ --epoch 100 \ --evaluate_per_iteration 100 \ --sample_workers 10 \ --margin 8 \ --neg_times 10 \ --neg_mode True # RotatE FB15k # -----Raw-Average-Results # MeanRank: 156.85, MRR: 0.2699, Hits@1: 0.1615, Hits@3: 0.3031, Hits@10: 0.5006 # -----Filter-Average-Results # MeanRank: 53.35, MRR: 0.4776, Hits@1: 0.3537, Hits@3: 0.5473, Hits@10: 0.7062 CUDA_VISIBLE_DEVICES=$device \ FLAGS_fraction_of_gpu_memory_to_use=0.01 \ python main.py \ --use_cuda \ --model RotatE \ --data_dir ./data/WN18 \ --optimizer adam \ --batch_size=512 \ --learning_rate=0.001 \ --epoch 100 \ --evaluate_per_iteration 100 \ --sample_workers 10 \ --margin 6 \ --neg_times 10 \ --neg_mode True # RotaE WN18 # -----Raw-Average-Results # MeanRank: 167.27, MRR: 0.6025, Hits@1: 0.4764, Hits@3: 0.6880, Hits@10: 0.8298 # -----Filter-Average-Results # MeanRank: 155.23, MRR: 0.9145, Hits@1: 0.8843, Hits@3: 0.9412, Hits@10: 0.9570