# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This file implement the testing process of STGCN model. """ import os import sys import time import argparse import numpy as np import pandas as pd import paddle.fluid as fluid import paddle.fluid.layers as fl import pgl from pgl.utils.logger import log from data_loader.data_utils import gen_batch from utils.math_utils import evaluation def multi_pred(exe, gw, gf, program, y_pred, seq, batch_size, \ n_his, n_pred, step_idx, dynamic_batch=True): """multi step prediction""" pred_list = [] for i in gen_batch( seq, min(batch_size, len(seq)), dynamic_batch=dynamic_batch): # Note: use np.copy() to avoid the modification of source data. test_seq = np.copy(i[:, 0:n_his + 1, :, :]).astype(np.float32) graph = gf.build_graph(i[:, 0:n_his, :, :]) feed = gw.to_feed(graph) step_list = [] for j in range(n_pred): feed['input'] = test_seq pred = exe.run(program, feed=feed, fetch_list=[y_pred]) if isinstance(pred, list): pred = np.array(pred[0]) test_seq[:, 0:n_his - 1, :, :] = test_seq[:, 1:n_his, :, :] test_seq[:, n_his - 1, :, :] = pred step_list.append(pred) pred_list.append(step_list) # pred_array -> [n_pred, len(seq), n_route, C_0) pred_array = np.concatenate(pred_list, axis=1) return pred_array, pred_array.shape[1] def model_inference(exe, gw, gf, program, pred, inputs, args, step_idx, min_va_val, min_val): """inference model""" x_val, x_test, x_stats = inputs.get_data('val'), inputs.get_data( 'test'), inputs.get_stats() if args.n_his + args.n_pred > x_val.shape[1]: raise ValueError( f'ERROR: the value of n_pred "{args.n_pred}" exceeds the length limit.' ) # y_val shape: [n_pred, len(x_val), n_route, C_0) y_val, len_val = multi_pred(exe, gw, gf, program, pred, \ x_val, args.batch_size, args.n_his, args.n_pred, step_idx) evl_val = evaluation(x_val[0:len_val, step_idx + args.n_his, :, :], y_val[step_idx], x_stats) # chks: indicator that reflects the relationship of values between evl_val and min_va_val. chks = evl_val < min_va_val # update the metric on test set, if model's performance got improved on the validation. if sum(chks): min_va_val[chks] = evl_val[chks] y_pred, len_pred = multi_pred(exe, gw, gf, program, pred, \ x_test, args.batch_size, args.n_his, args.n_pred, step_idx) evl_pred = evaluation(x_test[0:len_pred, step_idx + args.n_his, :, :], y_pred[step_idx], x_stats) min_val = evl_pred return min_va_val, min_val def model_test(exe, gw, gf, program, pred, inputs, args): """test model""" if args.inf_mode == 'sep': # for inference mode 'sep', the type of step index is int. step_idx = args.n_pred - 1 tmp_idx = [step_idx] elif args.inf_mode == 'merge': # for inference mode 'merge', the type of step index is np.ndarray. step_idx = tmp_idx = np.arange(3, args.n_pred + 1, 3) - 1 print(step_idx) else: raise ValueError(f'ERROR: test mode "{args.inf_mode}" is not defined.') x_test, x_stats = inputs.get_data('test'), inputs.get_stats() y_test, len_test = multi_pred(exe, gw, gf, program, pred, \ x_test, args.batch_size, args.n_his, args.n_pred, step_idx) # save result gt = x_test[0:len_test, args.n_his:, :, :].reshape(-1, args.n_route) y_pred = y_test.reshape(-1, args.n_route) city_df = pd.read_csv(args.city_file) city_df = city_df.drop(0) np.savetxt( os.path.join(args.output_path, "groundtruth.csv"), gt.astype(np.int32), fmt='%d', delimiter=',', header=",".join(city_df['city'])) np.savetxt( os.path.join(args.output_path, "prediction.csv"), y_pred.astype(np.int32), fmt='%d', delimiter=",", header=",".join(city_df['city'])) for i in range(step_idx + 1): evl = evaluation(x_test[0:len_test, step_idx + args.n_his, :, :], y_test[i], x_stats) for ix in tmp_idx: te = evl[ix - 2:ix + 1] print( f'Time Step {i + 1}: MAPE {te[0]:7.3%}; MAE {te[1]:4.3f}; RMSE {te[2]:6.3f}.' )