# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file implement the skipgram model for training metapath2vec. """ import argparse import time import math import os import io from multiprocessing import Pool import logging import numpy as np import glob import pgl from pgl import data_loader from pgl.utils import op from pgl.utils.logger import log import paddle.fluid as fluid import paddle.fluid.layers as fl class SkipgramModel(object): """Implemetation of skipgram model. Args: config: dict, some configure parameters. dataset: instance of Dataset class place: GPU or CPU place """ def __init__(self, config, dataset, place): self.config = config self.dataset = dataset self.place = place self.neg_num = self.dataset.config['neg_num'] self.num_nodes = len(dataset.word2id) self.train_inputs = fl.data( 'train_inputs', shape=[None, 1, 1], dtype='int64') self.train_labels = fl.data( 'train_labels', shape=[None, 1, 1], dtype='int64') self.train_negs = fl.data( 'train_negs', shape=[None, self.neg_num, 1], dtype='int64') self.forward() def backward(self, global_steps, opt_config): """Build the optimizer. """ self.lr = fl.polynomial_decay(opt_config['lr'], global_steps, opt_config['end_lr']) adam = fluid.optimizer.Adam(learning_rate=self.lr) adam.minimize(self.loss) def forward(self): """Build the skipgram model. """ initrange = 1.0 / self.config['embed_dim'] embed_init = fluid.initializer.UniformInitializer( low=-initrange, high=initrange) weight_init = fluid.initializer.TruncatedNormal( scale=1.0 / math.sqrt(self.config['embed_dim'])) embed_src = fl.embedding( input=self.train_inputs, size=[self.num_nodes, self.config['embed_dim']], param_attr=fluid.ParamAttr( name='content', initializer=embed_init)) weight_pos = fl.embedding( input=self.train_labels, size=[self.num_nodes, self.config['embed_dim']], param_attr=fluid.ParamAttr( name='weight', initializer=weight_init)) weight_negs = fl.embedding( input=self.train_negs, size=[self.num_nodes, self.config['embed_dim']], param_attr=fluid.ParamAttr( name='weight', initializer=weight_init)) pos_logits = fl.matmul( embed_src, weight_pos, transpose_y=True) # [batch_size, 1, 1] pos_score = fl.squeeze(pos_logits, axes=[1]) pos_score = fl.clip(pos_score, min=-10, max=10) pos_score = -self.neg_num * fl.logsigmoid(pos_score) neg_logits = fl.matmul( embed_src, weight_negs, transpose_y=True) # [batch_size, 1, neg_num] neg_score = fl.squeeze(neg_logits, axes=[1]) neg_score = fl.clip(neg_score, min=-10, max=10) neg_score = -1.0 * fl.logsigmoid(-1.0 * neg_score) neg_score = fl.reduce_sum(neg_score, dim=1, keep_dim=True) self.loss = fl.reduce_mean(pos_score + neg_score) / self.neg_num / 2