# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import sklearn from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score random_seed = 67 def train_lr_l2_model(args, data): """ The main function to train lr model with l2 regularization. """ acc_list = [] data = np.array(data) data = data[data[:, 0].argsort()] x_data = data[:, 1:-1] y_data = data[:, -1] for random_num in range(0, 10): X_train, X_test, y_train, y_test = train_test_split( x_data, y_data, test_size=0.2, random_state=random_num + random_seed) # use the one vs rest to train the lr model with l2 pred_test = [] for i in range(0, args.num_class): y_train_relabel = np.where(y_train == i, 1, 0) y_test_relabel = np.where(y_test == i, 1, 0) lr = LogisticRegression(C=10.0, random_state=0, max_iter=100) lr.fit(X_train, y_train_relabel) pred = lr.predict_proba(X_test) pred_test.append(pred[:, -1].tolist()) pred_test = np.array(pred_test) pred_test = np.transpose(pred_test) c_index = np.argmax(pred_test, axis=1) acc = accuracy_score(y_test.flatten(), c_index) acc_list.append(acc) print("pass:{}-acc:{}".format(random_num, acc)) print("the avg acc is {}".format(np.mean(acc_list)))