# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This package implement Graph structure for handling graph data. """ import os import numpy as np import pickle as pkl import time import warnings import pgl.graph_kernel as graph_kernel from collections import defaultdict __all__ = ['Graph', 'SubGraph', 'MultiGraph'] def _hide_num_nodes(shape): """Set the first dimension as unknown """ shape = list(shape) shape[0] = None return shape class EdgeIndex(object): """Indexing edges for fast graph queries Sorted edges and represent edges in compressed style like csc_matrix or csr_matrix. Args: u: A list of node id to be compressed. v: A list of node id that are connected with u. num_nodes: The exactive number of nodes. """ def __init__(self, u=None, v=None, num_nodes=None): if num_nodes is None: warnings.warn( "Creat empty edge index, please load index before use it!") else: self._degree, self._sorted_v, self._sorted_u, \ self._sorted_eid, self._indptr = graph_kernel.build_index(u, v, num_nodes) @property def degree(self): """Return the degree of nodes. """ return self._degree def view_v(self, u=None): """Return the compressed v for given u. """ if u is None: return np.split(self._sorted_v, self._indptr[1:]) else: u = np.array(u, dtype="int64") return graph_kernel.slice_by_index( self._sorted_v, self._indptr, index=u) def view_eid(self, u=None): """Return the compressed edge id for given u. """ if u is None: return np.split(self._sorted_eid, self._indptr[1:]) else: u = np.array(u, dtype="int64") return graph_kernel.slice_by_index( self._sorted_eid, self._indptr, index=u) def triples(self): """Return the sorted (u, v, eid) tuples. """ return self._sorted_u, self._sorted_v, self._sorted_eid def dump(self, path): if not os.path.exists(path): os.makedirs(path) np.save(os.path.join(path, 'degree.npy'), self._degree) np.save(os.path.join(path, 'sorted_u.npy'), self._sorted_u) np.save(os.path.join(path, 'sorted_v.npy'), self._sorted_v) np.save(os.path.join(path, 'sorted_eid.npy'), self._sorted_eid) np.save(os.path.join(path, 'indptr.npy'), self._indptr) def load(self, path, mmap_mode=None): self._degree = np.load( os.path.join(path, 'degree.npy'), mmap_mode=mmap_mode) self._sorted_u = np.load( os.path.join(path, 'sorted_u.npy'), mmap_mode=mmap_mode) self._sorted_v = np.load( os.path.join(path, 'sorted_v.npy'), mmap_mode=mmap_mode) self._sorted_eid = np.load( os.path.join(path, 'sorted_eid.npy'), mmap_mode=mmap_mode) self._indptr = np.load( os.path.join(path, 'indptr.npy'), mmap_mode=mmap_mode) class Graph(object): """Implementation of graph structure in pgl. This is a simple implementation of graph structure in pgl. Args: num_nodes: number of nodes in a graph edges: list of (u, v) tuples node_feat (optional): a dict of numpy array as node features edge_feat (optional): a dict of numpy array as edge features (should have consistent order with edges) Examples: .. code-block:: python import numpy as np num_nodes = 5 edges = [ (0, 1), (1, 2), (3, 4)] feature = np.random.randn(5, 100) edge_feature = np.random.randn(3, 100) graph = Graph(num_nodes=num_nodes, edges=edges, node_feat={ "feature": feature }, edge_feat={ "edge_feature": edge_feature }) """ def __init__(self, num_nodes=None, edges=None, node_feat=None, edge_feat=None): if num_nodes is None: warnings.warn( "Creat empty Graph, please load graph data before use it!") return if node_feat is not None: self._node_feat = node_feat else: self._node_feat = {} if edge_feat is not None: self._edge_feat = edge_feat else: self._edge_feat = {} if isinstance(edges, np.ndarray): if edges.dtype != "int64": edges = edges.astype("int64") else: edges = np.array(edges, dtype="int64") self._edges = edges self._num_nodes = num_nodes self._adj_src_index = None self._adj_dst_index = None self.indegree() self._num_graph = 1 self._graph_lod = np.array([0, self.num_nodes], dtype="int32") def dump(self, path): if not os.path.exists(path): os.makedirs(path) np.save(os.path.join(path, 'num_nodes.npy'), self._num_nodes) np.save(os.path.join(path, 'edges.npy'), self._edges) np.save(os.path.join(path, 'num_graph.npy'), self._num_graph) np.save(os.path.join(path, 'graph_lod.npy'), self._graph_lod) if self._adj_src_index: self._adj_src_index.dump(os.path.join(path, 'adj_src')) if self._adj_dst_index: self._adj_dst_index.dump(os.path.join(path, 'adj_dst')) def dump_feat(feat_path, feat): """Dump all features to .npy file. """ if len(feat) == 0: return if not os.path.exists(feat_path): os.makedirs(feat_path) for key in feat: np.save(os.path.join(feat_path, key + ".npy"), feat[key]) dump_feat(os.path.join(path, "node_feat"), self.node_feat) dump_feat(os.path.join(path, "edge_feat"), self.edge_feat) def load(self, path, mmap_mode=None): """ load graph from dumped files. """ if not os.path.exists(path): raise ValueError("Can't find path {}, stop loading graph!".format( path)) self._num_nodes = np.load(os.path.join(path, 'num_nodes.npy')) self._edges = np.load( os.path.join(path, 'edges.npy'), mmap_mode=mmap_mode) self._num_graph = np.load(os.path.join(path, 'num_graph.npy')) self._graph_lod = np.load(os.path.join(path, 'graph_lod.npy')) if os.path.isdir(os.path.join(path, 'adj_src')): edge_index = EdgeIndex() edge_index.load(os.path.join(path, 'adj_src'), mmap_mode=mmap_mode) self._adj_src_index = edge_index else: self._adj_src_index = None if os.path.isdir(os.path.join(path, 'adj_dst')): edge_index = EdgeIndex() edge_index.load(os.path.join(path, 'adj_dst'), mmap_mode=mmap_mode) self._adj_dst_index = edge_index else: self._adj_dst_index = None def load_feat(feat_path): """Load features from .npy file. """ feat = {} if os.path.isdir(feat_path): for feat_name in os.listdir(feat_path): feat[os.path.splitext(feat_name)[0]] = np.load( os.path.join(feat_path, feat_name), mmap_mode=mmap_mode) return feat self._node_feat = load_feat(os.path.join(path, 'node_feat')) self._edge_feat = load_feat(os.path.join(path, 'edge_feat')) return self @property def adj_src_index(self): """Return an EdgeIndex object for src. """ if self._adj_src_index is None: if len(self._edges) == 0: u = np.array([], dtype="int64") v = np.array([], dtype="int64") else: u = self._edges[:, 0] v = self._edges[:, 1] self._adj_src_index = EdgeIndex( u=u, v=v, num_nodes=self._num_nodes) return self._adj_src_index @property def adj_dst_index(self): """Return an EdgeIndex object for dst. """ if self._adj_dst_index is None: if len(self._edges) == 0: v = np.array([], dtype="int64") u = np.array([], dtype="int64") else: v = self._edges[:, 0] u = self._edges[:, 1] self._adj_dst_index = EdgeIndex( u=u, v=v, num_nodes=self._num_nodes) return self._adj_dst_index @property def edge_feat(self): """Return a dictionary of edge features. """ return self._edge_feat @property def node_feat(self): """Return a dictionary of node features. """ return self._node_feat @property def num_edges(self): """Return the number of edges. """ return len(self._edges) @property def num_nodes(self): """Return the number of nodes. """ return self._num_nodes @property def edges(self): """Return all edges in numpy.ndarray with shape (num_edges, 2). """ return self._edges def sorted_edges(self, sort_by="src"): """Return sorted edges with different strategies. This function will return sorted edges with different strategy. If :code:`sort_by="src"`, then edges will be sorted by :code:`src` nodes and otherwise :code:`dst`. Args: sort_by: The type for sorted edges. ("src" or "dst") Return: A tuple of (sorted_src, sorted_dst, sorted_eid). """ if sort_by not in ["src", "dst"]: raise ValueError("sort_by should be in 'src' or 'dst'.") if sort_by == 'src': src, dst, eid = self.adj_src_index.triples() else: dst, src, eid = self.adj_dst_index.triples() return src, dst, eid @property def nodes(self): """Return all nodes id from 0 to :code:`num_nodes - 1` """ return np.arange(self._num_nodes, dtype="int64") def indegree(self, nodes=None): """Return the indegree of the given nodes This function will return indegree of given nodes. Args: nodes: Return the indegree of given nodes, if nodes is None, return indegree for all nodes Return: A numpy.ndarray as the given nodes' indegree. """ if nodes is None: return self.adj_dst_index.degree else: return self.adj_dst_index.degree[nodes] def outdegree(self, nodes=None): """Return the outdegree of the given nodes. This function will return outdegree of given nodes. Args: nodes: Return the outdegree of given nodes, if nodes is None, return outdegree for all nodes Return: A numpy.array as the given nodes' outdegree. """ if nodes is None: return self.adj_src_index.degree else: return self.adj_src_index.degree[nodes] def successor(self, nodes=None, return_eids=False): """Find successor of given nodes. This function will return the successor of given nodes. Args: nodes: Return the successor of given nodes, if nodes is None, return successor for all nodes. return_eids: If True return nodes together with corresponding eid Return: Return a list of numpy.ndarray and each numpy.ndarray represent a list of successor ids for given nodes. If :code:`return_eids=True`, there will be an additional list of numpy.ndarray and each numpy.ndarray represent a list of eids that connected nodes to their successors. Example: .. code-block:: python import numpy as np num_nodes = 5 edges = [ (0, 1), (1, 2), (3, 4)] graph = Graph(num_nodes=num_nodes, edges=edges) succ, succ_eid = graph.successor(return_eids=True) This will give output. .. code-block:: python succ: [[1], [2], [], [4], []] succ_eid: [[0], [1], [], [2], []] """ if return_eids: return self.adj_src_index.view_v( nodes), self.adj_src_index.view_eid(nodes) else: return self.adj_src_index.view_v(nodes) def sample_successor(self, nodes, max_degree, return_eids=False, shuffle=False): """Sample successors of given nodes. Args: nodes: Given nodes whose successors will be sampled. max_degree: The max sampled successors for each nodes. return_eids: Whether to return the corresponding eids. Return: Return a list of numpy.ndarray and each numpy.ndarray represent a list of sampled successor ids for given nodes. If :code:`return_eids=True`, there will be an additional list of numpy.ndarray and each numpy.ndarray represent a list of eids that connected nodes to their successors. """ node_succ = self.successor(nodes, return_eids=return_eids) if return_eids: node_succ, node_succ_eid = node_succ if nodes is None: nodes = self.nodes node_succ = node_succ.tolist() if return_eids: node_succ_eid = node_succ_eid.tolist() if return_eids: return graph_kernel.sample_subset_with_eid( node_succ, node_succ_eid, max_degree, shuffle) else: return graph_kernel.sample_subset(node_succ, max_degree, shuffle) def predecessor(self, nodes=None, return_eids=False): """Find predecessor of given nodes. This function will return the predecessor of given nodes. Args: nodes: Return the predecessor of given nodes, if nodes is None, return predecessor for all nodes. return_eids: If True return nodes together with corresponding eid Return: Return a list of numpy.ndarray and each numpy.ndarray represent a list of predecessor ids for given nodes. If :code:`return_eids=True`, there will be an additional list of numpy.ndarray and each numpy.ndarray represent a list of eids that connected nodes to their predecessors. Example: .. code-block:: python import numpy as np num_nodes = 5 edges = [ (0, 1), (1, 2), (3, 4)] graph = Graph(num_nodes=num_nodes, edges=edges) pred, pred_eid = graph.predecessor(return_eids=True) This will give output. .. code-block:: python pred: [[], [0], [1], [], [3]] pred_eid: [[], [0], [1], [], [2]] """ if return_eids: return self.adj_dst_index.view_v( nodes), self.adj_dst_index.view_eid(nodes) else: return self.adj_dst_index.view_v(nodes) def sample_predecessor(self, nodes, max_degree, return_eids=False, shuffle=False): """Sample predecessor of given nodes. Args: nodes: Given nodes whose predecessor will be sampled. max_degree: The max sampled predecessor for each nodes. return_eids: Whether to return the corresponding eids. Return: Return a list of numpy.ndarray and each numpy.ndarray represent a list of sampled predecessor ids for given nodes. If :code:`return_eids=True`, there will be an additional list of numpy.ndarray and each numpy.ndarray represent a list of eids that connected nodes to their predecessors. """ node_pred = self.predecessor(nodes, return_eids=return_eids) if return_eids: node_pred, node_pred_eid = node_pred if nodes is None: nodes = self.nodes node_pred = node_pred.tolist() if return_eids: node_pred_eid = node_pred_eid.tolist() if return_eids: return graph_kernel.sample_subset_with_eid( node_pred, node_pred_eid, max_degree, shuffle) else: return graph_kernel.sample_subset(node_pred, max_degree, shuffle) def node_feat_info(self): """Return the information of node feature for GraphWrapper. This function return the information of node features. And this function is used to help constructing GraphWrapper Return: A list of tuple (name, shape, dtype) for all given node feature. Examples: .. code-block:: python import numpy as np num_nodes = 5 edges = [ (0, 1), (1, 2), (3, 4)] feature = np.random.randn(5, 100) graph = Graph(num_nodes=num_nodes, edges=edges, node_feat={ "feature": feature }) print(graph.node_feat_info()) The output will be: .. code-block:: python [("feature", [None, 100], "float32")] """ node_feat_info = [] for key, value in self._node_feat.items(): node_feat_info.append( (key, _hide_num_nodes(value.shape), value.dtype)) return node_feat_info def edge_feat_info(self): """Return the information of edge feature for GraphWrapper. This function return the information of edge features. And this function is used to help constructing GraphWrapper Return: A list of tuple (name, shape, dtype) for all given edge feature. Examples: .. code-block:: python import numpy as np num_nodes = 5 edges = [ (0, 1), (1, 2), (3, 4)] feature = np.random.randn(3, 100) graph = Graph(num_nodes=num_nodes, edges=edges, edge_feat={ "feature": feature }) print(graph.edge_feat_info()) The output will be: .. code-block:: python [("feature", [None, 100], "float32")] """ edge_feat_info = [] for key, value in self._edge_feat.items(): edge_feat_info.append( (key, _hide_num_nodes(value.shape), value.dtype)) return edge_feat_info def subgraph(self, nodes, eid=None, edges=None, edge_feats=None, with_node_feat=True, with_edge_feat=True): """Generate subgraph with nodes and edge ids. This function will generate a :code:`pgl.graph.Subgraph` object and copy all corresponding node and edge features. Nodes and edges will be reindex from 0. Eid and edges can't both be None. WARNING: ALL NODES IN EID MUST BE INCLUDED BY NODES Args: nodes: Node ids which will be included in the subgraph. eid (optional): Edge ids which will be included in the subgraph. edges (optional): Edge(src, dst) list which will be included in the subgraph. with_node_feat: Whether to inherit node features from parent graph. with_edge_feat: Whether to inherit edge features from parent graph. Return: A :code:`pgl.graph.Subgraph` object. """ reindex = {} for ind, node in enumerate(nodes): reindex[node] = ind if eid is None and edges is None: raise ValueError("Eid and edges can't be None at the same time.") if edges is None: edges = self._edges[eid] else: edges = np.array(edges, dtype="int64") sub_edges = graph_kernel.map_edges( np.arange( len(edges), dtype="int64"), edges, reindex) sub_edge_feat = {} if edges is None: if with_edge_feat: for key, value in self._edge_feat.items(): if eid is None: raise ValueError( "Eid can not be None with edge features.") sub_edge_feat[key] = value[eid] else: sub_edge_feat = edge_feats sub_node_feat = {} if with_node_feat: for key, value in self._node_feat.items(): sub_node_feat[key] = value[nodes] subgraph = SubGraph( num_nodes=len(nodes), edges=sub_edges, node_feat=sub_node_feat, edge_feat=sub_edge_feat, reindex=reindex) return subgraph def node_batch_iter(self, batch_size, shuffle=True): """Node batch iterator Iterate all node by batch. Args: batch_size: The batch size of each batch of nodes. shuffle: Whether shuffle the nodes. Return: Batch iterator """ perm = np.arange(self._num_nodes, dtype="int64") if shuffle: np.random.shuffle(perm) start = 0 while start < self._num_nodes: yield perm[start:start + batch_size] start += batch_size def sample_nodes(self, sample_num): """Sample nodes from the graph This function helps to sample nodes from all nodes. Nodes might be duplicated. Args: sample_num: The number of samples Return: A list of nodes """ return np.random.randint(low=0, high=self._num_nodes, size=sample_num) def sample_edges(self, sample_num, replace=False): """Sample edges from the graph This function helps to sample edges from all edges. Args: sample_num: The number of samples replace: boolean, Whether the sample is with or without replacement. Return: (u, v), eid each is a numy.array with the same shape. """ sampled_eid = np.random.choice( np.arange(self._edges.shape[0]), sample_num, replace=replace) return self._edges[sampled_eid], sampled_eid def has_edges_between(self, u, v): """Check whether some edges is in graph. Args: u: a numpy.array of src nodes ID. v: a numpy.array of dst nodes ID. Return: exists: A numpy.array of bool, with the same shape with `u` and `v`, exists[i] is True if (u[i], v[i]) is a edge in graph, Flase otherwise. """ assert u.shape[0] == v.shape[0], "u and v must have the same shape" exists = np.logical_and(u < self.num_nodes, v < self.num_nodes) exists_idx = np.arange(u.shape[0])[exists] for idx, succ in zip(exists_idx, self.successor(u[exists])): exists[idx] = v[idx] in succ return exists def random_walk(self, nodes, max_depth): """Implement of random walk. This function get random walks path for given nodes and depth. Args: nodes: Walk starting from nodes max_depth: Max walking depth Return: A list of walks. """ walk = [] # init for node in nodes: walk.append([node]) cur_walk_ids = np.arange(0, len(nodes)) cur_nodes = np.array(nodes) for l in range(max_depth): # select the walks not end outdegree = self.outdegree(cur_nodes) mask = (outdegree != 0) if np.any(mask): cur_walk_ids = cur_walk_ids[mask] cur_nodes = cur_nodes[mask] outdegree = outdegree[mask] else: # stop when all nodes have no successor break succ = self.successor(cur_nodes) sample_index = np.floor( np.random.rand(outdegree.shape[0]) * outdegree).astype("int64") nxt_cur_nodes = [] for s, ind, walk_id in zip(succ, sample_index, cur_walk_ids): walk[walk_id].append(s[ind]) nxt_cur_nodes.append(s[ind]) cur_nodes = np.array(nxt_cur_nodes) return walk def node2vec_random_walk(self, nodes, max_depth, p=1.0, q=1.0): """Implement of node2vec stype random walk. Reference paper: https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf. Args: nodes: Walk starting from nodes max_depth: Max walking depth p: Return parameter q: In-out parameter Return: A list of walks. """ if p == 1. and q == 1.: return self.random_walk(nodes, max_depth) walk = [] # init for node in nodes: walk.append([node]) cur_walk_ids = np.arange(0, len(nodes)) cur_nodes = np.array(nodes) prev_nodes = np.array([-1] * len(nodes), dtype="int64") prev_succs = np.array([[]] * len(nodes), dtype="int64") for l in range(max_depth): # select the walks not end outdegree = self.outdegree(cur_nodes) mask = (outdegree != 0) if np.any(mask): cur_walk_ids = cur_walk_ids[mask] cur_nodes = cur_nodes[mask] prev_nodes = prev_nodes[mask] prev_succs = prev_succs[mask] else: # stop when all nodes have no successor break cur_succs = self.successor(cur_nodes) num_nodes = cur_nodes.shape[0] nxt_nodes = np.zeros(num_nodes, dtype="int64") for idx, (succ, prev_succ, walk_id, prev_node) in enumerate( zip(cur_succs, prev_succs, cur_walk_ids, prev_nodes)): sampled_succ = graph_kernel.node2vec_sample(succ, prev_succ, prev_node, p, q) walk[walk_id].append(sampled_succ) nxt_nodes[idx] = sampled_succ prev_nodes, prev_succs = cur_nodes, cur_succs cur_nodes = nxt_nodes return walk @property def num_graph(self): """ Return Number of Graphs""" return self._num_graph @property def graph_lod(self): """ Return Graph Lod Index for Paddle Computation""" return self._graph_lod class SubGraph(Graph): """Implementation of SubGraph in pgl. Subgraph is inherit from :code:`Graph`. The best way to construct subgraph is to use :code:`Graph.subgraph` methods to generate Subgraph object. Args: num_nodes: number of nodes in a graph edges: list of (u, v) tuples node_feat (optional): a dict of numpy array as node features edge_feat (optional): a dict of numpy array as edge features (should have consistent order with edges) reindex: A dictionary that maps parent graph node id to subgraph node id. """ def __init__(self, num_nodes, edges=None, node_feat=None, edge_feat=None, reindex=None): super(SubGraph, self).__init__( num_nodes=num_nodes, edges=edges, node_feat=node_feat, edge_feat=edge_feat) if reindex is None: reindex = {} self._from_reindex = reindex self._to_reindex = {u: v for v, u in reindex.items()} def reindex_from_parrent_nodes(self, nodes): """Map the given parent graph node id to subgraph id. Args: nodes: A list of nodes from parent graph. Return: A list of subgraph ids. """ return graph_kernel.map_nodes(nodes, self._from_reindex) def reindex_to_parrent_nodes(self, nodes): """Map the given subgraph node id to parent graph id. Args: nodes: A list of nodes in this subgraph. Return: A list of node ids in parent graph. """ return graph_kernel.map_nodes(nodes, self._to_reindex) class MultiGraph(Graph): """Implementation of multiple disjoint graph structure in pgl. This is a simple implementation of graph structure in pgl. Args: graph_list : A list of Graph Instances Examples: .. code-block:: python batch_graph = MultiGraph([graph1, graph2, graph3]) """ def __init__(self, graph_list): num_nodes = np.sum([g.num_nodes for g in graph_list]) node_feat = self._join_node_feature(graph_list) edge_feat = self._join_edge_feature(graph_list) edges = self._join_edges(graph_list) super(MultiGraph, self).__init__( num_nodes=num_nodes, edges=edges, node_feat=node_feat, edge_feat=edge_feat) self._num_graph = len(graph_list) self._src_graph = graph_list graph_lod = [g.num_nodes for g in graph_list] graph_lod = np.cumsum(graph_lod, dtype="int32") graph_lod = np.insert(graph_lod, 0, 0) self._graph_lod = graph_lod def __getitem__(self, index): return self._src_graph[index] def _join_node_feature(self, graph_list): """join node features for multiple graph""" node_feat = defaultdict(lambda: []) for graph in graph_list: for key in graph.node_feat: node_feat[key].append(graph.node_feat[key]) ret_node_feat = {} for key in node_feat: ret_node_feat[key] = np.vstack(node_feat[key]) return ret_node_feat def _join_edge_feature(self, graph_list): """join edge features for multiple graph""" edge_feat = defaultdict(lambda: []) for graph in graph_list: for key in graph.edge_feat: efeat = graph.edge_feat[key] if len(efeat) > 0: edge_feat[key].append(efeat) ret_edge_feat = {} for key in edge_feat: ret_edge_feat[key] = np.vstack(edge_feat[key]) return ret_edge_feat def _join_edges(self, graph_list): """join edges for multiple graph""" list_edges = [] start_offset = 0 for graph in graph_list: edges = graph.edges if len(edges) > 0: edges = edges + start_offset list_edges.append(edges) start_offset += graph.num_nodes edges = np.vstack(list_edges) return edges class MemmapEdgeIndex(EdgeIndex): def __init__(self, path): self._degree = np.load(os.path.join(path, 'degree.npy'), mmap_mode="r") self._sorted_u = np.load( os.path.join(path, 'sorted_u.npy'), mmap_mode="r") self._sorted_v = np.load( os.path.join(path, 'sorted_v.npy'), mmap_mode="r") self._sorted_eid = np.load( os.path.join(path, 'sorted_eid.npy'), mmap_mode="r") self._indptr = np.load(os.path.join(path, 'indptr.npy'), mmap_mode="r") class MemmapGraph(Graph): def __init__(self, path): self._num_nodes = np.load(os.path.join(path, 'num_nodes.npy')) self._edges = np.load(os.path.join(path, 'edges.npy'), mmap_mode="r") if os.path.isdir(os.path.join(path, 'adj_src')): self._adj_src_index = MemmapEdgeIndex( os.path.join(path, 'adj_src')) else: self._adj_src_index = None if os.path.isdir(os.path.join(path, 'adj_dst')): self._adj_dst_index = MemmapEdgeIndex( os.path.join(path, 'adj_dst')) else: self._adj_dst_index = None def load_feat(feat_path): """Load features from .npy file. """ feat = {} if os.path.isdir(feat_path): for feat_name in os.listdir(feat_path): feat[os.path.splitext(feat_name)[0]] = np.load( os.path.join(feat_path, feat_name), mmap_mode="r") return feat self._node_feat = load_feat(os.path.join(path, 'node_feat')) self._edge_feat = load_feat(os.path.join(path, 'edge_feat'))