# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file implement the training process of STGCN model. """ import os import sys import time import argparse import numpy as np import paddle.fluid as fluid import paddle.fluid.layers as fl import pgl from pgl.utils.logger import log from data_loader.data_utils import data_gen_mydata, gen_batch from data_loader.graph import GraphFactory from models.model import STGCNModel from models.tester import model_inference, model_test def main(args): """main""" PeMS = data_gen_mydata(args.input_file, args.label_file, args.n_route, args.n_his, args.n_pred, (args.n_val, args.n_test)) log.info(PeMS.get_stats()) log.info(PeMS.get_len('train')) gf = GraphFactory(args) place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace() train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): gw = pgl.graph_wrapper.GraphWrapper( "gw", node_feat=[('norm', [None, 1], "float32")], edge_feat=[('weights', [None, 1], "float32")]) model = STGCNModel(args, gw) train_loss, y_pred = model.forward() infer_program = train_program.clone(for_test=True) with fluid.program_guard(train_program, startup_program): epoch_step = int(PeMS.get_len('train') / args.batch_size) + 1 lr = fl.exponential_decay( learning_rate=args.lr, decay_steps=5 * epoch_step, decay_rate=0.7, staircase=True) if args.opt == 'RMSProp': train_op = fluid.optimizer.RMSPropOptimizer(lr).minimize( train_loss) elif args.opt == 'ADAM': train_op = fluid.optimizer.Adam(lr).minimize(train_loss) exe = fluid.Executor(place) exe.run(startup_program) if args.inf_mode == 'sep': # for inference mode 'sep', the type of step index is int. step_idx = args.n_pred - 1 tmp_idx = [step_idx] min_val = min_va_val = np.array([4e1, 1e5, 1e5]) elif args.inf_mode == 'merge': # for inference mode 'merge', the type of step index is np.ndarray. step_idx = tmp_idx = np.arange(3, args.n_pred + 1, 3) - 1 min_val = min_va_val = np.array([4e1, 1e5, 1e5]) * len(step_idx) else: raise ValueError(f'ERROR: test mode "{args.inf_mode}" is not defined.') step = 0 for epoch in range(1, args.epochs + 1): for idx, x_batch in enumerate( gen_batch( PeMS.get_data('train'), args.batch_size, dynamic_batch=True, shuffle=True)): x = np.array(x_batch[:, 0:args.n_his, :, :], dtype=np.float32) graph = gf.build_graph(x) feed = gw.to_feed(graph) feed['input'] = np.array( x_batch[:, 0:args.n_his + 1, :, :], dtype=np.float32) b_loss, b_lr = exe.run(train_program, feed=feed, fetch_list=[train_loss, lr]) if idx % 5 == 0: log.info("epoch %d | step %d | lr %.6f | loss %.6f" % (epoch, idx, b_lr[0], b_loss[0])) min_va_val, min_val = \ model_inference(exe, gw, gf, infer_program, y_pred, PeMS, args, \ step_idx, min_va_val, min_val) for ix in tmp_idx: va, te = min_va_val[ix - 2:ix + 1], min_val[ix - 2:ix + 1] print(f'Time Step {ix + 1}: ' f'MAPE {va[0]:7.3%}, {te[0]:7.3%}; ' f'MAE {va[1]:4.3f}, {te[1]:4.3f}; ' f'RMSE {va[2]:6.3f}, {te[2]:6.3f}.') if epoch % 5 == 0: model_test(exe, gw, gf, infer_program, y_pred, PeMS, args) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--n_route', type=int, default=74) parser.add_argument('--n_his', type=int, default=23) parser.add_argument('--n_pred', type=int, default=3) parser.add_argument('--batch_size', type=int, default=10) parser.add_argument('--epochs', type=int, default=100) parser.add_argument('--save', type=int, default=10) parser.add_argument('--Ks', type=int, default=3) #equal to num_layers parser.add_argument('--Kt', type=int, default=3) parser.add_argument('--lr', type=float, default=1e-2) parser.add_argument('--keep_prob', type=float, default=1.0) parser.add_argument('--opt', type=str, default='RMSProp') parser.add_argument('--inf_mode', type=str, default='sep') parser.add_argument('--input_file', type=str, default='dataset/input.csv') parser.add_argument('--label_file', type=str, default='dataset/output.csv') parser.add_argument( '--city_file', type=str, default='dataset/crawl_list.csv') parser.add_argument('--adj_mat_file', type=str, default='dataset/W_74.csv') parser.add_argument('--output_path', type=str, default='./outputs/') parser.add_argument('--n_val', type=str, default=1) parser.add_argument('--n_test', type=str, default=1) parser.add_argument('--use_cuda', action='store_true') args = parser.parse_args() blocks = [[1, 32, 64], [64, 32, 128]] args.blocks = blocks log.info(args) if not os.path.exists(args.output_path): os.makedirs(args.output_path) main(args)