# Graph Property Prediction for Open Graph Benchmark (OGB) [The Open Graph Benchmark (OGB)](https://ogb.stanford.edu/) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Here we complete the Graph Property Prediction task based on PGL. ### Requirements - paddlpaddle >= 1.7.1 - pgl 1.0.2 - ogb NOTE: To install ogb that is fited for this project, run below command to install ogb ``` git clone https://github.com/snap-stanford/ogb.git git checkout 482c40bc9f31fe25f9df5aa11c8fb657bd2b1621 python setup.py install ``` ### How to run For example, use GPU to train model on ogbg-molhiv dataset and ogb-molpcba dataset. ``` CUDA_VISIBLE_DEVICES=1 python -u main.py --config hiv_config.yaml --use_cuda CUDA_VISIBLE_DEVICES=2 python -u main.py --config pcba_config.yaml --use_cuda ``` If you want to use CPU to train model, environment variables `CPU_NUM` should be specified and should be in the range of 1 to N, where N is the total CPU number on your machine. ``` CPU_NUM=1 python -u main.py --config hiv_config.yaml CPU_NUM=1 python -u main.py --config pcba_config.yaml ``` ### Experiment results | model | hiv (rocauc)| pcba (prcauc)| |-------|-------------|--------------| | GIN |0.7719 (0.0079) | 0.2232 (0.0018) |