# PGL Examples for GCN [Graph Convolutional Network \(GCN\)](https://arxiv.org/abs/1609.02907) is a powerful neural network designed for machine learning on graphs. Based on PGL, we reproduce GCN algorithms and reach the same level of indicators as the paper in citation network benchmarks. ### Simple example to build GCN To build a gcn layer, one can use our pre-defined ```pgl.layers.gcn``` or just write a gcn layer with message passing interface. ```python import paddle.fluid as fluid def gcn_layer(graph_wrapper, node_feature, hidden_size, act): def send_func(src_feat, dst_feat, edge_feat): return src_feat["h"] def recv_func(msg): return fluid.layers.sequence_pool(msg, "sum") message = graph_wrapper.send(send_func, nfeat_list=[("h", node_feature)]) output = graph_wrapper.recv(recv_func, message) output = fluid.layers.fc(output, size=hidden_size, act=act) return output ``` ### Datasets The datasets contain three citation networks: CORA, PUBMED, CITESEER. The details for these three datasets can be found in the [paper](https://arxiv.org/abs/1609.02907). ### Dependencies - paddlepaddle>=1.6 - pgl ### Performance We train our models for 200 epochs and report the accuracy on the test dataset. | Dataset | Accuracy | | --- | --- | | Cora | ~81% | | Pubmed | ~79% | | Citeseer | ~71% | ### How to run For examples, use gpu to train gcn on cora dataset. ``` python train.py --dataset cora --use_cuda ``` #### Hyperparameters - dataset: The citation dataset "cora", "citeseer", "pubmed". - use_cuda: Use gpu if assign use_cuda.