# PGL Examples for GCN [Deep Graph Infomax \(DGI\)](https://arxiv.org/abs/1809.10341) is a general approach for learning node representations within graph-structured data in an unsupervised manner. DGI relies on maximizing mutual information between patch representations and corresponding high-level summaries of graphs---both derived using established graph convolutional network architectures. ### Datasets The datasets contain three citation networks: CORA, PUBMED, CITESEER. The details for these three datasets can be found in the [paper](https://arxiv.org/abs/1609.02907). ### Dependencies - paddlepaddle>=1.6 - pgl ### Performance We use DGI to pretrain embeddings for each nodes. Then we fix the embedding to train a node classifier. | Dataset | Accuracy | | --- | --- | | Cora | ~81% | | Pubmed | ~77.6% | | Citeseer | ~71.3% | ### How to run For examples, use gpu to train gcn on cora dataset. ``` python dgi.py --dataset cora --use_cuda python train.py --dataset cora --use_cuda ``` #### Hyperparameters - dataset: The citation dataset "cora", "citeseer", "pubmed". - use_cuda: Use gpu if assign use_cuda.