## OGB_Benchmark This experiment is based on stanford OGB (1.2.1) benchmark. The description of 《Masked Label Prediction: Unified Massage Passing Model for Semi-Supervised Classification》 is [avaiable here](). The steps are: ### Install environment: ``` git clone https://github.com/PaddlePaddle/PGL.git cd PGL pip install -e pip install -r requirements.txt ``` ### Arxiv dataset: 1. ```python main_arxiv.py --place 0 --log_file arxiv_baseline.txt``` to get the baseline result of arxiv dataset. 2. ```python main_arxiv.py --place 0 --use_label_e --log_file arxiv_unipm.txt``` to get the UniPM result of arxiv dataset. ### Products dataset: 1. ```python main_product.py --place 0 --log_file product_label_embedding.txt --use_label_e``` to get the UniPM result of Products dataset. ### Proteins dataset: 1. ```python main_protein.py --place 0 --log_file protein_baseline.txt ``` to get the baseline result of Proteins dataset. 2. ```python main_protein.py --place 0 --use_label_e --log_file protein_label_embedding.txt``` to get the UniPM result of Proteins dataset. ### The **detailed hyperparameter** is: ``` Arxiv_dataset(Full Batch): Products_dataset(NeighborSampler): Proteins_dataset(Random Partition): --num_layers 3 --num_layers 3 --num_layers 7 --hidden_size 128 --hidden_size 128 --hidden_size 64 --num_heads 2 --num_heads 4 --num_heads 4 --dropout 0.3 --dropout 0.3 --dropout 0.1 --lr 0.001 --lr 0.001 --lr 0.001 --use_label_e True --use_label_e True --use_label_e True --label_rate 0.625 --label_rate 0.625 --label_rate 0.5 --weight_decay. 0.0005 ``` ### Reference performance for OGB: | Model |Test Accuracy |Valid Accuracy | Parameters | Hardware | | ------------------ |-------------- | --------------- | -------------- |----------| | Arxiv_baseline | $0.7225 \pm 0.0015$ | $$0.7367 \pm 0.0012$$ | 468,369 | Tesla V100 (32GB) | | Arxiv_UniPM | $$0.7311 \pm 0.0021$$ | $$0.7450 \pm 0.0005$$ | 473,489 | Tesla V100 (32GB) | | Products_baseline | $$0.8023 \pm 0.0026$$ | $$0.9286 \pm 0.0017$$ | 1,470,905 | Tesla V100 (32GB) | | Products_UniPM | $$0.8256 \pm 0.0031$$ | $$0.9308 \pm 0.0017$$ | 1,475,605 | Tesla V100 (32GB) | | Proteins_baseline | $$0.8611 \pm 0.0017$$ | $$0.9128 \pm 0.0007$$ | 1,879,664 | Tesla V100 (32GB) | | Proteins_UniPM | $$0.8643 \pm 0.0016$$ | $$0.9175 \pm 0.0007$$ | 1,909,104 | Tesla V100 (32GB) |