# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import argparse import time import sys import traceback import numpy as np import scipy.sparse as sp from sklearn.preprocessing import StandardScaler import pgl from pgl.utils.logger import log from pgl.utils import paddle_helper import paddle import paddle.fluid as fluid import reader from model import graphsage_mean, graphsage_meanpool,\ graphsage_maxpool, graphsage_lstm def load_data(normalize=True, symmetry=True): """ data from https://github.com/matenure/FastGCN/issues/8 reddit_adj.npz: https://drive.google.com/open?id=174vb0Ws7Vxk_QTUtxqTgDHSQ4El4qDHt reddit.npz: https://drive.google.com/open?id=19SphVl_Oe8SJ1r87Hr5a6znx3nJu1F2J """ data_dir = os.path.dirname(os.path.abspath(__file__)) data = np.load(os.path.join(data_dir, "data/reddit.npz")) adj = sp.load_npz(os.path.join(data_dir, "data/reddit_adj.npz")) if symmetry: adj = adj + adj.T adj = adj.tocoo() src = adj.row dst = adj.col num_class = 41 train_label = data['y_train'] val_label = data['y_val'] test_label = data['y_test'] train_index = data['train_index'] val_index = data['val_index'] test_index = data['test_index'] feature = data["feats"].astype("float32") if normalize: scaler = StandardScaler() scaler.fit(feature[train_index]) feature = scaler.transform(feature) log.info("Feature shape %s" % (repr(feature.shape))) graph = pgl.graph.Graph( num_nodes=feature.shape[0], edges=list(zip(src, dst)), node_feat={"feat": feature.astype("float32")}) return { "graph": graph, "train_index": train_index, "train_label": train_label, "val_label": val_label, "val_index": val_index, "test_index": test_index, "test_label": test_label, "num_class": 41 } def build_graph_model(graph_wrapper, num_class, k_hop, graphsage_type, hidden_size): """build_graph_model""" node_index = fluid.layers.data( "node_index", shape=[None], dtype="int64", append_batch_size=False) node_label = fluid.layers.data( "node_label", shape=[None, 1], dtype="int64", append_batch_size=False) feature = graph_wrapper.node_feat["feat"] for i in range(k_hop): if graphsage_type == 'graphsage_mean': feature = graphsage_mean( graph_wrapper, feature, hidden_size, act="relu", name="graphsage_mean_%s" % i) elif graphsage_type == 'graphsage_meanpool': feature = graphsage_meanpool( graph_wrapper, feature, hidden_size, act="relu", name="graphsage_meanpool_%s" % i) elif graphsage_type == 'graphsage_maxpool': feature = graphsage_maxpool( graph_wrapper, feature, hidden_size, act="relu", name="graphsage_maxpool_%s" % i) elif graphsage_type == 'graphsage_lstm': feature = graphsage_lstm( graph_wrapper, feature, hidden_size, act="relu", name="graphsage_maxpool_%s" % i) else: raise ValueError("graphsage type %s is not" " implemented" % graphsage_type) feature = fluid.layers.gather(feature, node_index) logits = fluid.layers.fc(feature, num_class, act=None, name='classification_layer') proba = fluid.layers.softmax(logits) loss = fluid.layers.softmax_with_cross_entropy( logits=logits, label=node_label) loss = fluid.layers.mean(loss) acc = fluid.layers.accuracy(input=proba, label=node_label, k=1) return loss, acc def to_multidevice(batch_iter, num_trainer): """to_multidevice""" batch_dict = [] for batch in batch_iter(): batch_dict.append(batch) if len(batch_dict) == num_trainer: yield batch_dict batch_dict = [] if len(batch_dict) > 0: log.warning("The batch (%s) can't fill all device (%s)" "which will be discarded." % (len(batch_dict), num_trainer)) def run_epoch(batch_iter, exe, program, prefix, model_loss, model_acc, epoch, log_per_step=100, num_trainer=1): """run_epoch""" batch = 0 total_loss = 0. total_acc = 0. total_sample = 0 start = time.time() if num_trainer > 1: batch_iter = to_multidevice(batch_iter, num_trainer) else: batch_iter = batch_iter() for batch_feed_dict in batch_iter: batch += 1 if num_trainer > 1: batch_loss, batch_acc = exe.run( fetch_list=[model_loss.name, model_acc.name], feed=batch_feed_dict) batch_loss = np.mean(batch_loss) batch_acc = np.mean(batch_acc) else: batch_loss, batch_acc = exe.run( program, fetch_list=[model_loss.name, model_acc.name], feed=batch_feed_dict) if batch % log_per_step == 0: log.info("Batch %s %s-Loss %s %s-Acc %s" % (batch, prefix, batch_loss, prefix, batch_acc)) if num_trainer > 1: num_samples = sum( [len(_batch["node_index"]) for _batch in batch_feed_dict]) else: num_samples = len(batch_feed_dict["node_index"]) total_loss += batch_loss * num_samples total_acc += batch_acc * num_samples total_sample += num_samples end = time.time() log.info("%s Epoch %s Loss %.5lf Acc %.5lf Speed(per batch) %.5lf sec" % (prefix, epoch, total_loss / total_sample, total_acc / total_sample, (end - start) / batch)) def main(args): """main""" data = load_data(args.normalize, args.symmetry) log.info("preprocess finish") log.info("Train Examples: %s" % len(data["train_index"])) log.info("Val Examples: %s" % len(data["val_index"])) log.info("Test Examples: %s" % len(data["test_index"])) log.info("Num nodes %s" % data["graph"].num_nodes) log.info("Num edges %s" % data["graph"].num_edges) log.info("Average Degree %s" % np.mean(data["graph"].indegree())) place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace() train_program = fluid.Program() startup_program = fluid.Program() samples = [] if args.samples_1 > 0: samples.append(args.samples_1) if args.samples_2 > 0: samples.append(args.samples_2) with fluid.program_guard(train_program, startup_program): graph_wrapper = pgl.graph_wrapper.GraphWrapper( "sub_graph", fluid.CPUPlace(), node_feat=data['graph'].node_feat_info()) model_loss, model_acc = build_graph_model( graph_wrapper, num_class=data["num_class"], hidden_size=args.hidden_size, graphsage_type=args.graphsage_type, k_hop=len(samples)) test_program = train_program.clone(for_test=True) with fluid.program_guard(train_program, startup_program): adam = fluid.optimizer.Adam(learning_rate=args.lr) adam.minimize(model_loss) exe = fluid.Executor(place) exe.run(startup_program) if args.num_trainer > 1: build_strategy = fluid.BuildStrategy() build_strategy.remove_unnecessary_lock = False build_strategy.enable_sequential_execution = True train_exe = fluid.ParallelExecutor( use_cuda=args.use_cuda, main_program=train_program, build_strategy=build_strategy, loss_name=model_loss.name) else: train_exe = exe train_iter = reader.multiprocess_graph_reader( data['graph'], graph_wrapper, samples=samples, num_workers=args.sample_workers, batch_size=args.batch_size, node_index=data['train_index'], node_label=data["train_label"]) val_iter = reader.multiprocess_graph_reader( data['graph'], graph_wrapper, samples=samples, num_workers=args.sample_workers, batch_size=args.batch_size, node_index=data['val_index'], node_label=data["val_label"]) test_iter = reader.multiprocess_graph_reader( data['graph'], graph_wrapper, samples=samples, num_workers=args.sample_workers, batch_size=args.batch_size, node_index=data['test_index'], node_label=data["test_label"]) for epoch in range(args.epoch): run_epoch( train_iter, program=train_program, exe=train_exe, prefix="train", model_loss=model_loss, model_acc=model_acc, num_trainer=args.num_trainer, epoch=epoch) run_epoch( val_iter, program=test_program, exe=exe, prefix="val", model_loss=model_loss, model_acc=model_acc, log_per_step=10000, epoch=epoch) run_epoch( test_iter, program=test_program, prefix="test", exe=exe, model_loss=model_loss, model_acc=model_acc, log_per_step=10000, epoch=epoch) if __name__ == "__main__": parser = argparse.ArgumentParser(description='graphsage') parser.add_argument("--use_cuda", action='store_true', help="use_cuda") parser.add_argument( "--normalize", action='store_true', help="normalize features") parser.add_argument( "--symmetry", action='store_true', help="undirect graph") parser.add_argument("--graphsage_type", type=str, default="graphsage_mean") parser.add_argument("--sample_workers", type=int, default=5) parser.add_argument("--epoch", type=int, default=10) parser.add_argument("--hidden_size", type=int, default=128) parser.add_argument("--batch_size", type=int, default=128) parser.add_argument("--num_trainer", type=int, default=1) parser.add_argument("--lr", type=float, default=0.01) parser.add_argument("--samples_1", type=int, default=25) parser.add_argument("--samples_2", type=int, default=10) args = parser.parse_args() log.info(args) main(args)