import pgl import paddle.fluid.layers as L import pgl.layers.conv as conv def get_norm(indegree): float_degree = L.cast(indegree, dtype="float32") float_degree = L.clamp(float_degree, min=1.0) norm = L.pow(float_degree, factor=-0.5) return norm class GCN(object): """Implement of GCN """ def __init__(self, config, num_class): self.num_class = num_class self.num_layers = config.get("num_layers", 1) self.hidden_size = config.get("hidden_size", 64) self.dropout = config.get("dropout", 0.5) self.edge_dropout = config.get("edge_dropout", 0.0) def forward(self, graph_wrapper, feature, phase): for i in range(self.num_layers): if phase == "train": ngw = pgl.sample.edge_drop(graph_wrapper, self.edge_dropout) norm = get_norm(ngw.indegree()) else: ngw = graph_wrapper norm = graph_wrapper.node_feat["norm"] feature = pgl.layers.gcn(ngw, feature, self.hidden_size, activation="relu", norm=norm, name="layer_%s" % i) feature = L.dropout( feature, self.dropout, dropout_implementation='upscale_in_train') if phase == "train": ngw = pgl.sample.edge_drop(graph_wrapper, self.edge_dropout) norm = get_norm(ngw.indegree()) else: ngw = graph_wrapper norm = graph_wrapper.node_feat["norm"] feature = conv.gcn(ngw, feature, self.num_class, activation=None, norm=norm, name="output") return feature class GAT(object): """Implement of GAT""" def __init__(self, config, num_class): self.num_class = num_class self.num_layers = config.get("num_layers", 1) self.num_heads = config.get("num_heads", 8) self.hidden_size = config.get("hidden_size", 8) self.feat_dropout = config.get("feat_drop", 0.6) self.attn_dropout = config.get("attn_drop", 0.6) self.edge_dropout = config.get("edge_dropout", 0.0) def forward(self, graph_wrapper, feature, phase): if phase == "train": edge_dropout = self.edge_dropout else: edge_dropout = 0 for i in range(self.num_layers): ngw = pgl.sample.edge_drop(graph_wrapper, edge_dropout) feature = conv.gat(ngw, feature, self.hidden_size, activation="elu", name="gat_layer_%s" % i, num_heads=self.num_heads, feat_drop=self.feat_dropout, attn_drop=self.attn_dropout) ngw = pgl.sample.edge_drop(graph_wrapper, edge_dropout) feature = conv.gat(ngw, feature, self.num_class, num_heads=1, activation=None, feat_drop=self.feat_dropout, attn_drop=self.attn_dropout, name="output") return feature class APPNP(object): """Implement of APPNP""" def __init__(self, config, num_class): self.num_class = num_class self.num_layers = config.get("num_layers", 1) self.hidden_size = config.get("hidden_size", 64) self.dropout = config.get("dropout", 0.5) self.alpha = config.get("alpha", 0.1) self.k_hop = config.get("k_hop", 10) self.edge_dropout = config.get("edge_dropout", 0.0) def forward(self, graph_wrapper, feature, phase): if phase == "train": edge_dropout = self.edge_dropout else: edge_dropout = 0 for i in range(self.num_layers): feature = L.dropout( feature, self.dropout, dropout_implementation='upscale_in_train') feature = L.fc(feature, self.hidden_size, act="relu", name="lin%s" % i) feature = L.dropout( feature, self.dropout, dropout_implementation='upscale_in_train') feature = L.fc(feature, self.num_class, act=None, name="output") feature = conv.appnp(graph_wrapper, feature=feature, edge_dropout=edge_dropout, alpha=self.alpha, k_hop=self.k_hop) return feature class SGC(object): """Implement of SGC""" def __init__(self, config, num_class): self.num_class = num_class self.num_layers = config.get("num_layers", 1) def forward(self, graph_wrapper, feature, phase): feature = conv.appnp(graph_wrapper, feature=feature, edge_dropout=0, alpha=0, k_hop=self.num_layers) feature.stop_gradient=True feature = L.fc(feature, self.num_class, act=None, bias_attr=False, name="output") return feature class GCNII(object): """Implement of GCNII""" def __init__(self, config, num_class): self.num_class = num_class self.num_layers = config.get("num_layers", 1) self.hidden_size = config.get("hidden_size", 64) self.dropout = config.get("dropout", 0.6) self.alpha = config.get("alpha", 0.1) self.lambda_l = config.get("lambda_l", 0.5) self.k_hop = config.get("k_hop", 64) self.edge_dropout = config.get("edge_dropout", 0.0) def forward(self, graph_wrapper, feature, phase): if phase == "train": edge_dropout = self.edge_dropout else: edge_dropout = 0 for i in range(self.num_layers): feature = L.fc(feature, self.hidden_size, act="relu", name="lin%s" % i) feature = L.dropout( feature, self.dropout, dropout_implementation='upscale_in_train') feature = conv.gcnii(graph_wrapper, feature=feature, name="gcnii", activation="relu", lambda_l=self.lambda_l, alpha=self.alpha, dropout=self.dropout, k_hop=self.k_hop) feature = L.fc(feature, self.num_class, act=None, name="output") return feature