diff --git a/ogb_examples/nodeproppred/unimp/main_protein.py b/ogb_examples/nodeproppred/unimp/main_protein.py index 1ad8073112d69844e9bed4a8ae5d8fa54f7e8e36..970314d3587dbdc6cfa41c43aa8942c1f4698577 100644 --- a/ogb_examples/nodeproppred/unimp/main_protein.py +++ b/ogb_examples/nodeproppred/unimp/main_protein.py @@ -23,7 +23,7 @@ evaluator = Evaluator(name='ogbn-proteins') def get_config(): parser = argparse.ArgumentParser() - ## 基本模型参数 + ## model_arg model_group=parser.add_argument_group('model_base_arg') model_group.add_argument('--num_layers', default=7, type=int) model_group.add_argument('--hidden_size', default=64, type=int) @@ -31,7 +31,7 @@ def get_config(): model_group.add_argument('--dropout', default=0.1, type=float) model_group.add_argument('--attn_dropout', default=0, type=float) - ## label embedding模型参数 + ## label_embed_arg embed_group=parser.add_argument_group('embed_arg') embed_group.add_argument('--use_label_e', action='store_true') embed_group.add_argument('--label_rate', default=0.5, type=float) @@ -90,15 +90,16 @@ def eval_test(parser, program, model, test_exe, graph, y_true, split_idx): def train_loop(parser, start_program, main_program, test_program, model, graph, label, split_idx, exe, run_id, wf=None): - #启动上文构建的训练器 + #build up training program exe.run(start_program) - max_acc=0 # 最佳test_acc - max_step=0 # 最佳test_acc 对应step - max_val_acc=0 # 最佳val_acc - max_cor_acc=0 # 最佳val_acc对应test_acc - max_cor_step=0 # 最佳val_acc对应step - #训练循环 + max_acc=0 # best test_acc + max_step=0 # step for best test_acc + max_val_acc=0 # best val_acc + max_cor_acc=0 # test_acc for best val_acc + max_cor_step=0 # step for best val_acc + #training loop + graph.node_feat["label"] = label graph.node_feat["nid"] = np.arange(0, graph.num_nodes) @@ -112,7 +113,7 @@ def train_loop(parser, start_program, main_program, test_program, for epoch_id in tqdm(range(parser.epochs)): for subgraph in random_partition(num_clusters=9, graph=graph, shuffle=True): - #运行训练器 + #start training if parser.use_label_e: feed_dict = model.gw.to_feed(subgraph) sub_idx = set(subgraph.node_feat["nid"]) @@ -139,7 +140,7 @@ def train_loop(parser, start_program, main_program, test_program, fetch_list=[model.avg_cost]) loss = loss[0] - #测试结果 + #eval result if (epoch_id+1) > parser.epochs*0.9: result = eval_test(parser, test_program, model, exe, graph, label, split_idx) train_acc, valid_acc, test_acc = result @@ -221,7 +222,7 @@ if __name__ == '__main__': model.train_program() - adam_optimizer = optimizer_func(parser.lr)#训练优化函数 + adam_optimizer = optimizer_func(parser.lr)#optimizer adam_optimizer.minimize(model.avg_cost) exe = F.Executor(place)