diff --git a/ogb_examples/nodeproppred/unimp/README.MD b/ogb_examples/nodeproppred/unimp/README.MD index ef349b854ed397fe5bd1d4c7c56d349ab2848079..ff82dc9cef6ec9bb4d83883a8a8308fcbeb1ed97 100644 --- a/ogb_examples/nodeproppred/unimp/README.MD +++ b/ogb_examples/nodeproppred/unimp/README.MD @@ -2,9 +2,6 @@ This experiment is based on stanford OGB (1.2.1) benchmark. The description of 《Masked Label Prediction: Unified Massage Passing Model for Semi-Supervised Classification》 is [avaiable here](). The steps are: -### Note: - The result of Arxiv dataset have been updated, which is slight different from the paper. - ### Install environment: ``` git clone https://github.com/PaddlePaddle/PGL.git @@ -43,7 +40,7 @@ Arxiv_dataset(Full Batch): Products_dataset(NeighborSampler): | Model |Test Accuracy |Valid Accuracy | Parameters | Hardware | | ------------------ |-------------- | --------------- | -------------- |----------| | Arxiv_baseline | 0.7225 ± 0.0015 | 0.7367 ± 0.0012 | 468,369 | Tesla V100 (32GB) | -| Arxiv_UniPM | 0.7317 ± 0.0021 | 0.7456 ± 0.0011 | 473,489 | Tesla V100 (32GB) | +| Arxiv_UniPM | 0.7311 ± 0.0021 | 0.7450 ± 0.0005 | 473,489 | Tesla V100 (32GB) | | Products_baseline | 0.8023 ± 0.0026 | 0.9286 ± 0.0017 | 1,470,905 | Tesla V100 (32GB) | | Products_UniPM | 0.8256 ± 0.0031 | 0.9308 ± 0.0017 | 1,475,605 | Tesla V100 (32GB) | | Proteins_baseline | 0.8611 ± 0.0017 | 0.9128 ± 0.0007 | 1,879,664 | Tesla V100 (32GB) |