From c56c4b1172339218b648111396f73bb8fcac9bf4 Mon Sep 17 00:00:00 2001 From: Webbley Date: Fri, 22 May 2020 20:33:11 +0800 Subject: [PATCH] update tutorials --- docs/source/quick_start/md/quick_start.md | 16 ++-- tutorials/1-Introduction.ipynb | 93 +++++++++++------------ 2 files changed, 51 insertions(+), 58 deletions(-) diff --git a/docs/source/quick_start/md/quick_start.md b/docs/source/quick_start/md/quick_start.md index 6c4fa5d..afa8a22 100644 --- a/docs/source/quick_start/md/quick_start.md +++ b/docs/source/quick_start/md/quick_start.md @@ -19,8 +19,8 @@ def build_graph(): # Each node can be represented by a d-dimensional feature vector, here for simple, the feature vectors are randomly generated. d = 16 feature = np.random.randn(num_node, d).astype("float32") - # each edge also can be represented by a feature vector - edge_feature = np.random.randn(len(edge_list), d).astype("float32") + # each edge has it own weight + edge_feature = np.random.randn(len(edge_list), 1).astype("float32") # create a graph g = graph.Graph(num_nodes = num_node, @@ -66,13 +66,13 @@ In this tutorial, we use a simple Graph Convolutional Network(GCN) developed by In PGL, we can easily implement a GCN layer as follows: ```python # define GCN layer function -def gcn_layer(gw, feature, hidden_size, name, activation): +def gcn_layer(gw, nfeat, efeat, hidden_size, name, activation): # gw is a GraphWrapper;feature is the feature vectors of nodes # define message function def send_func(src_feat, dst_feat, edge_feat): # In this tutorial, we return the feature vector of the source node as message - return src_feat['h'] + return src_feat['h'] * edge_feat['e'] # define reduce function def recv_func(feat): @@ -80,7 +80,7 @@ def gcn_layer(gw, feature, hidden_size, name, activation): return fluid.layers.sequence_pool(feat, pool_type='sum') # trigger message to passing - msg = gw.send(send_func, nfeat_list=[('h', feature)]) + msg = gw.send(send_func, nfeat_list=[('h', nfeat)], efeat_list=[('e', efeat)]) # recv funciton receives message and trigger reduce funcition to handle message output = gw.recv(msg, recv_func) output = fluid.layers.fc(output, @@ -92,10 +92,10 @@ def gcn_layer(gw, feature, hidden_size, name, activation): ``` After defining the GCN layer, we can construct a deeper GCN model with two GCN layers. ```python -output = gcn_layer(gw, gw.node_feat['feature'], +output = gcn_layer(gw, gw.node_feat['feature'], gw.edge_feat['edge_feature'], hidden_size=8, name='gcn_layer_1', activation='relu') -output = gcn_layer(gw, output, hidden_size=1, - name='gcn_layer_2', activation=None) +output = gcn_layer(gw, output, gw.edge_feat['edge_feature'], + hidden_size=1, name='gcn_layer_2', activation=None) ``` ## Step 3: data preprocessing diff --git a/tutorials/1-Introduction.ipynb b/tutorials/1-Introduction.ipynb index 9d849a0..7c2e413 100644 --- a/tutorials/1-Introduction.ipynb +++ b/tutorials/1-Introduction.ipynb @@ -42,8 +42,8 @@ " d = 16\n", " feature = np.random.randn(num_node, d).astype(\"float32\")\n", " #feature = np.array(feature, dtype=\"float32\")\n", - " # 对于边,也同样可以用一个特征向量表示。\n", - " edge_feature = np.random.randn(len(edge_list), d).astype(\"float32\")\n", + " # 对于边,也同样可以用边的权重作为边特征\n", + " edge_feature = np.random.randn(len(edge_list), 1).astype(\"float32\")\n", " \n", " # 根据节点,边以及对应的特征向量,创建一个完整的图网络。\n", " # 在PGL中,节点特征和边特征都是存储在一个dict中。\n", @@ -99,7 +99,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcUAAAE1CAYAAACWU/udAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8zWf/x/HXOScnO6GEGiElxApBEkQitbporVaHlppVWru2Wylt1S5qtkRbe7WUalUQMxJbiMbeI4iMk7O/vz9Cfh1ozsnZuZ73I4/eJd/r+ijyznV9ryGTJElCEARBEATk9i5AEARBEByFCEVBEARBeEiEoiAIgiA8JEJREARBEB4SoSgIgiAID4lQFARBEISHRCgKgiAIwkMiFAVBEAThIRGKgiAIgvCQCEVBEARBeEiEoiAIgiA8JEJREARBEB4SoSgIgiAID4lQFARBEISHRCgKgiAIwkMiFAVBEAThITd7FyAIgmAvOoOOU3dOkXInhRxtDhISvu6+1CxVk1qlaqFUKO1domBjIhQFQShSMjWZLD26lPmH5pN2Nw1PN08ADJIBALlMjgwZar2aKiWq0Du8N+/XfZ/insXtWbZgIzJJkiR7FyEIgmBt93LvMWzbMJafWI5cJidHl1Og53yUPhgkA2/VeoupL04lwDvAypUK9iRCURAEl/dz6s90/bkrubpcNAaNWW24K9zxcvNicdvFdKjRwcIVCo5ChKIgCC7LYDTQ+5ferDi5ApVOZZE2vZXevF7jdZa0XYJCrrBIm4LjEKEoCIJLMkpG3lrzFlvObrFYID7irfTmhcovsO7NdSIYXYzYkiEIgkv6aPNHVglEAJVOxbbz2+i1qZfF2xbsS4SiIAgu5/dzv/P98e+tEoiPqHQqVqWsYkvaFqv1IdiemD4VBMGlZGoyCZ4VTLoq3Sb9lfAqwbn+58SWDRchRoqCILiUCQkTyNZm26y/HG0OY3eMtVl/gnWJkaIgCC5Do9dQakopsrRZNu3XR+nDnaF38FJ62bRfwfLESFEQBJex9tRaJGz/fb5MJmNVyiqb9ytYnghFQRBcxrdHvjVv6jQRWABMADaY/ni2NptFhxeZ/qDgcMTZp4IguIyjN4+a96AfEAucA3TmNXH81nEkSUImk5nXgOAQRCgKguASbmbfJFeXa97DNR/+8zpmh6LBaOBK5hUqFqtoXgMOTKPXcPjGYQ7dOETCpQQuZFxAo9fgrnCnnF85YoNiCS8bTkS5CPw8/OxdbqGIUBQEwSWkpqfi6eZp9tmmheWucCc1PdWlQvH8/fPMSpzFd0e+Qy6TozVoUevVf/ucQzcO8du53/B080Rr0NKxZkeGRA0hrEyYnaouHBGKgiC4BGtu1C8ICcnuNVhKhjqDvpv7siF1AwajAZ3x6cNnrUGL1qAFYPmJ5aw7vY4G5RrwQ4cfCPQPtEXJFiMW2giC4BJk2P9dnlzm/F9St57dSvCsYNafXo9ar/7PQPwng2RApVOx58oeasypwXdHvsOZdv45/++gIAgC4O/hb5ftGI/IkOHn7tzv074+8DWvr36de7n3Cj0NrTfqydZl0//X/ny85WOnCUYxfSoIgksILR1q/kIbA2AEpIcfOvKGDCZcgJGpymT+Z/M5HHqYOnXqEBYWRunSpc2rxw5mJc5iVPwoi08Bq3Qq4o7FYZSMzG091+FX54oTbQRBcBllp5blZs5N0x/cAez6x489DzQreBPFlcWZVmYax44d4/jx4xw7dgx3d3fq1KmT/xEWFkb16tXx8PAwvUYr+v3c77Rf1d6q70S9ld5MajmJfg36Wa0PSxChKAiCy2i/sj0/nfnJLn2/UuUVtrz7/zdmSJLE9evX80Py0ce5c+eoUqVKfkg+CsyyZcvaZRT1QP2A4FnB3M29a/W+vJXenOhzgsrPVLZ6X+YSoSgIgsv4/dzvvL76dZseCA7g5+7HitdX0Dqk9X9+rlqt5vTp0/mjyUf/lCTpbyFZp04datWqhaenp1Vr77KhC2tOrfnXVgtrUMgU1C9bn8SeiQ47jSpCURAEl2GUjAROD+RG9g2b9lvKuxQ3htxAITfhJeRfSJLErVu3/jWq/PPPP6lUqdK/pmADAwMtEioXMy5S45saNgnER3zdfdn49kaaVTJhbtqGxEIbQRBchlwm5/3g95l8eDJGhdEmfXorvRnaeKjZgQh5B4qXKVOGMmXK8NJLL+X/uFarJTU1NT8kZ8+ezfHjx1Gr1X8LyUejSh8fH5P6/SbpG4ySbf47PZKtzWbKvikOG4pipCgIgkvIyMhg3Lhx/Lj8R5T9lNwy3rL6Fg0ZMqqWrMrJPidRKpRW7euvbt++zYkTJ/42skxNTSUwMPBfU7DPPffcY0eVWoOWgMkB5l2ztQ64AGgBXyAaCC/4454KT84NOEc5v3Km921lYqQoCIJTMxqNLFmyhNGjR9OmTRtOp5zmDneIWBhBrt7MLRoF5OnmyZqOa2waiAClS5emRYsWtGjRIv/HdDodf/75Z35ILly4kGPHjpGVlUXt2rX/NrIMDQ3lTNYZ8wtoArQlL0HuAHFAWaCAGadUKNl1cRfv1H7H/BqsRIwUBUFwWomJifTr1w+FQsHs2bOJiIjI/7n5yfMZ/NtgqwWjt9KbSS0m0a+hY28xuHv3LidOnPjbwp5Tp07h3cSb+w3uY1AYCtdBOnmh+DIQWrBHZMj4uMHHzHplVuH6tgIRioIgOJ1bt24xYsQIfvvtNyZNmsR7772HXP7vA7om753M+F3jLb7/zlvpzciYkYyJHWPRdm3FYDDQ4YcObLy00fxGfgGOAnqgDNANMGH7Zb0y9Tjc+7D5/VuJOOZNEASnodPpmD59OrVq1SIgIIDU1FS6dOny2EAEGBY9jK9f/hovNy+LnEsql8nxcvNi6gtTnTYQARQKBXeNhdyX+CowirwwrIHJL+NsvUK4oMQ7RUEQnMK2bdsYMGAAFSpUYM+ePVSvXr1Az/Ws35Png57nrbVv8efdP8nR5ZjVv4/Sh+BnglndcTXVAqqZ1YYjscg2DDkQBBwHkoBGBX9UZzDz4korE6EoCIJDu3DhAkOGDOHo0aPMmDGDNm3amLxHr2rJqiT1SuL7Y9/zxZ4vuJF1g1x97n9uR5Ahw1vpzbM+zzIiZgTd63Uv1NYLR+KhsOBRc0bgvmmPuMkdM37E9KkgCA5JpVLx6aefEhERQf369Tl16hRt27Y1e9O6Qq6gW71u/Pnxn/zR5Q961OtBcLFgMORtKPf38Mffwx9fd1+UciXVSlajW71u/N75d872P0uv8F4uE4gAFYpVMO/BbOAEoCEvDM8CJ4FKpjVTyruUef1bmWNGtSAIRZYkSaxbt44hQ4bQqFEjjhw5QsWKlrvNXiaT0SiwEY0CG7F582ZmzprJN8u/IUebg4SEj9KHys9Utvk2C1uLqRjDxjMbTV+dKwOSyVtoIwHFyVt5WrDZ7HzRFaNNe8BGRCgKguAwUlJS6N+/P7dv3yYuLo5mzax76klKSgq1a9UmpGSIVftxROFlw1EqlKaHog95i2sKwdfdl8YVGheuESsR06eCINhdRkYGAwcOpGnTprRr144jR45YPRAhLxRr1apl9X4cUb2y9dAb9XbpW2/UExsUa5e+/4sIRUEQ7MZoNPLdd99RvXp1VCoVp06dol+/fri52WYSqyiHoqebJ13qdLHLgpfIcpE8V/w5m/dbEGLzviAIdpGYmMjHH3+Mm5vbv06jsQWj0Yi/vz/Xr1/H39/fpn07ijPpZ6i3oJ7Vj8P7K193X1a+vrJA12zZgxgpCoJgU7du3aJbt260b9+efv36sXfvXpsHIsDFixcpUaJEkQ1EgGoB1WheqTnucneb9CdDRnm/8rxc5WWb9GcOEYqCINiEqafRWFtRnjr9q8VtF+PpZt2LjB95dIC6I29tEatPBUGwum3bttG/f3+CgoJMOo3Gmk6ePClCEXDTuFHpZCVOBJ+w6h2Uj+6drP1sbav1YQlipCgIgtVcuHCBDh060Lt3byZNmsSvv/7qEIEIYqQIcOzYMSIjI2n+bHOGxAzBW+ltlX683bx5Kfglxj4/1irtW5IIRUEQLM7Sp9FYQ0pKCqGhBbzryAWtWLGCli1bMmHCBKZPn85XL3zFR5EfWTwYvZXevFTlJVa9scoih7Jbm1h9KgiCxfzzNJqpU6dSoYKZx4lZkcFgwM/Pj9u3b+Pr62vvcmxKr9czfPhwfvrpJ9avX09YWNjffj7uaBz9tvRDbVAXah+jDBmebp6MjBnJ6NjRThGIIN4pCoJgIX89jWbp0qU0bdrU3iU90fnz53n22WeLXCDeuXOHt956C3d3d5KSkihRosS/Pqdr3a60rNySd9e/y6Hrhwp0cPo/+bn7EegfyOqOqwkt7VyjceeIbkEQHNbjTqNx5ECEovk+MSkpiYiICKKioti8efNjA/GRQP9Adr6/kz+6/EH76u3xUHjg7+GP/AmRIUOGn7sfnm6eNHuuGWs6ruFk35NOF4ggRoqCIJjJaDSyZMkSRo8eTdu2bTl16hSlSjnmzQf/VNRCcfHixQwfPpwFCxbQoUOHAj3z6OD0tW+uJV2Vzu5Lu0m8lkjCpQSuZV1Da9CilCsp5V2KmIoxNApsREzFGPNv33AQIhQFQTDZgQMH6NevH0qlks2bNxMeHm7vkkySkpLCyy877gZyS9FqtQwYMID4+Hh27dpFzZo1zWonwDuA9jXa075GewtX6HjE9KkgCAV28+ZNunbtSocOHejfvz979uxxukCEojFSvH79Os2aNeP69escPHjQ7EAsakQoCoLwnx6dRhMaGkqpUqVITU2lc+fOdjuNpjD0ej1paWnUqFHD3qVYzd69e2nQoAGvvPIKGzZsoFixYvYuyWmI6VNBcAI6g44Tt09w6Poh9lzZw8X7F9EYNLgr3KlQrAIxFWIILxdO2LNheLh5WLRvRzyNpjDOnTtH2bJl8fa2zkZ1e5IkiXnz5jF+/HiWLFlCq1at7F2S0xGhKAgO7PKDy8w5OIcFhxYgSRIGyYBKp/rX5204vQGlQonBaKBb3W70b9ifqiWrFqrvCxcuMGTIEI4dO8aMGTN47bXXHGrzvblc9Xi33Nxc+vbtS3JyMnv37qVKlSr2LskpOd/chyAUAZmaTLps6EK1OdX4OvFrMjWZZGmzHhuIALn6XDI1meToclhwaAF15teh3cp2pKvSTe5bpVIxduxYIiIiCA8PJyUlhTZt2rhEIIJrnmRz6dIlmjRpgkqlYv/+/SIQC0GEoiA4mG3nthE8K5g1KWtQ69VoDVqTntcZdaj1an49+ytVZlVh/en1BXpOkiTWrl1LjRo1OHPmDEePHmX06NF4etrmBgVbcbVFNvHx8TRs2JC3336blStXFrkDCSxNTJ8KggOZlTiLEX+MsMilr1qDFq1BS+cNnTl68yjjm45/4mjv0Wk0d+7ccfjTaAorJSWFkSNH2ruMQpMkienTpzNlyhSWLVtGixYt7F2SSxBnnwqCg5iVOIuR20c+cYq0MLyV3gxqNIiJzSf+7cczMjL49NNPWb58OZ9++ikffvghbm6u+72yTqfD39+f+/fvO/UIOCcnh549e5KWlsa6desICgqyd0kuQ0yfCoID+DXtV0b8McIqgQig0qmYcWAGPx7/Ecg7jebbb7+levXqqNVqTp06xccff+zSgQiQlpZGhQoVnDoQz507R1RUFB4eHuzevVsEooW59t8AQXACGeoM3tvwnkWmTJ9GpVPRZ3Mfit8vzvhPxjvtaTSF4ezvE3/99Ve6du3K2LFj6du3r8ssfnIkIhQFwc76bu5LjjbHJn3laHJ4/cfX+bb/t7z77rtOufm+MJw1FI1GI59//jnz589n3bp1xMTE2LsklyVCURDs6Ny9c2xI3YDGoLFJf5JMwu05N6o3r17kAhHyQrGgB2I7iszMTLp06cLt27dJSkqiXLly9i7JpRW9vxWC4EBmJc7CYDTYtE+1Qc20/dNs2qejcLaR4unTp2nQoAFly5Zl586dIhBtwKVWn0qSkdzcNNTqK0iSBplMiVJZCh+fWsjl7vYuTxD+Rq1XU2pKKbK12aY9qAc2A+eBXOAZoCVgwgE2nm6eXBt8jRJeT75Tz9VoNBqKFy9ORkYGHh6WPQrPGjZs2EDv3r2ZNGkS3bt3t3c5RYbTT59qtbe4fn0Rd+6sQ6U6jUzmhkz211+WEaNRjadnEM888xLly3+Mj49zn90ouIZD1w8hl5kxWWME/IGuQDEgDVgD9CEvIAvAXeHO7ku7aVu9ren9O6k///yToKAghw9Eg8HA2LFj+eGHH9i8eTORkZH2LqlIcdpQzMk5zfnzI7h373dAhiTlrdyTpMe/m8nNPUtu7kVu3lyMj08olSp9QYkSLW1YsSD83aEbh0w+rQYAd6DZX/69GlAcuEGBQzFHm8PBaweLVCg6w/Fu9+7do1OnTmg0GpKTkyldurS9SypynO6doiQZuHTpCw4dCufu3U1Ikjo/EP+bHqMxl6ysJE6ebMupU53R6x9YtV5BeJKESwmo9erCN5QN3AVMuPTeIBnYdWlX4ft2Io7+PvHYsWNERkZSs2ZNtm3bJgLRTpwqFLXaOyQn1+fSpS8wGnMB81+HGo0q0tPXkphYhaysI5YrUhAK6ELGhcI3YgDWAXUxKRQBrmVeK3z/TsSRQ3HFihW0bNmSCRMmMH36dJc/RMGROc1/eY3mJocPN0SrvYEk6SzSptGoxmhUc/RoLGFhf+Dv39Ai7QpCQWj0hdyGYQTWAwrAjGvzzJq6dWKOGIp6vZ5hw4bx888/88cffxAWFmbvkoo8pxgp6vVZHDkSjVZ73WKB+FcGQzbHjr1ATs5pi7ctCE/irijEimgJ2AjkAG+RF4wmclM4zffEhaZWq7l8+TJVqxbujklLun37Ni+88AKnTp0iKSlJBKKDcIpQTEvrh0ZzHUnSW60PgyGbkyc7YDRaPnQF4XHK+JYx/+FfgDvAO4DSvCZKeZs43+rEzpw5Q+XKlXF3d4ytWUlJSURGRtK4cWM2b95MiRJFZ2uMo3P4ULx37w/u3FmDJFlgQcJTSWg0l7l06Usr9yMIeWKDYs0bLWYAh4CbwFTg84cfxwvehAwZTYKamN63k3KkqdPFixfTqlUrZs6cyeeff45CYcYwX7Aah54/kSQDqaldMBqtc3PAPxmNKq5cmUTZst3w9Kxgkz6FoiuyXCSebp6mv9srDowrXN++7r40Kt+ocI04EUcIRa1Wy4ABA9ixYwcJCQnUqFHDrvUIj+fQI8W7d3/FYDDxtI9CkiQD1659Y9M+haIpsnyk3Ra76Iw6YioWnUOl7R2K169fp2nTpty4cYODBw+KQHRgDh2KV65MxmDIsmmfkqTl+vX5GI1Fa2WeYHv+Hv60r97evFNtCim6QjTl/cvbvF97OXnypN1Ccc+ePURGRtKqVSvWr1+Pv7+/XeoQCsZhQ1Gnu0tmZqJZzw4cCC++CK+8kvfRpYupLUjcv7/drL4FwRSfNP4ETzcbX3irhYpXK5KVZdtvOO1FpVJx7do1qlSpYtN+JUnim2++oUOHDixatIgxY8YUyZtJnI3DvlPMyjqEXO6FwczppQEDoHVr8/o2GFRkZiZSsuQr5jUgCAVUv2x96petz4GrB9Abrbe6+hEZMiqVrIQqSUWVKlUYPHgwH330Eb6+vlbv215SU1OpWrUqSqWZy3TNkJubS58+fTh8+DD79u2zeSAL5nPYb1uyspIxGGxz8eq/6XnwoGgdgSXYz7IOy/BQ2OaQak83Tza+t5GVK1YSHx/PkSNHCA4OZvLkyWRn2/b9va3Y+n3ipUuXiImJQa1Ws3//fhGITsZhQzEz8yB5d+SYZ9EiaNsWPv4Yjh41/XmxkV+wlYrFKjKp+SQURusuzfdWejMyZiS1SucFRK1atVi5ciXbt2/n0KFDBAcHM2XKFHJy7PXNqHXYMhTj4+Np2LAhnTp1YsWKFfj4+NikX8FyHDYUDQbzD+r+4ANYvhzWrIFXX4VRo+Caicc85p2tKgjWd//+fdaNWkfgvUC83byt0oeXmxcvBb/E6NjR//q50NBQVq1axfbt20lKSiI4OJipU6e6TDjaIhQlSWLq1Kl06tSJ5cuXM2TIEGQymVX7FKzDYUOxMGrWBG9vcHeHl1+G0FBING/NjiBY1cWLF4mOjiasThhpM9J4p/Y7eCstG4zeSm9ervIyq95Y9dSVrqGhoaxevZpt27aRmJhIcHAw06ZNQ6WyzT5ha7F2KObk5PDOO++wcuVKEhMTad68udX6EqzPYUNRobDcsmWZDCQTL9SQy228IlAocpKTk4mOjqZ3797MnDkTpZuSRa8tYmKziXi5eRV6q4YMGV5uXnwS9Qlr31yLUlGwhSa1a9dmzZo1/P777+zfv5/g4GCmT5/ulOGYk5PDzZs3CQ4Otkr7Z8+epVGjRnh5ebF7926CgoKs0o9gOw4bin5+kZhzqGN2Nhw8CFotGAywbRscPw4NGpjWjre32FwrWM+mTZto1aoVc+fOZcCAAfk/LpPJGBQ1iGMfHiPs2TB83c1bFerr7kvVklU50PMA45uNNytg69Spw9q1a9m6dSt79+4lODiYGTNmOFU4nj59mpCQEKscpbZlyxYaN25Mnz59WLx4MV5eXhbvQ7A9hw1Ff/9IFArTp5H0eli8GNq1y1tos2EDTJgAFUw6tU1B8eLPm9y3IBTEnDlz6N27N5s3b6Zt27aP/ZyqJauS/EEyG97aQMvKLfFQeODn7vfUdn2Vvni6eRJdIZrlHZZzqu8p6jxbp9D1hoWFsW7dOn799Vd2795NlSpVmDlzJrm5jv/e3RpTp0ajkQkTJtCrVy82bNhA3759xftDFyKTJFMnFm1Dq01n//5AJKmQd86ZQaHwp2bNFZQsacYldYLwBAaDgaFDh7J161Y2b95MpUqVCvzs1cyr7Ly4k/1X9rPn8h5u5txEZ9ChVCgJ8A4gukI0jSs0JjYolsrPVLbirwKOHDnCZ599RmJiIsOHD+eDDz5w2FHSsGHDKF68OKNGjbJIew8ePOD999/nzp07rFmzhnLlylmkXcFxOGwoAhw+HE1m5j6b96tQ+BMdfRu53DZ7xwTXp1KpeO+997h//z7r16/nmWeesXdJhXbkyBHGjx9PUlJSfjh6ejrWu/hWrVrRu3fvJ47ITXH69GnatWtHixYtmDlzpsNcQyVYlsNOnwJUrDgcheLpU0aWJpO5U65cbxGIgsXcvn2bZs2a4ePjw9atW10iEAHq1avHTz/9xKZNm9i+fTvBwcHMnj0btdra17wVnKWmT9evX09sbCzDhw9n7ty5IhBdmEOPFCXJwL595dDpbtusT7nciwYNTuPpKVaRCYWXmppK69atee+99xg3bpxLv3s6dOgQ48eP5/Dhw4wYMYKePXvaZOQoSRIXMi5w6Pohzt8/j8agwU3uhrfMmxFdR5B+Mh1fT/MWLBkMBv73v/+xbNky1q5dS2RkpIWrFxyNQ4ciwL17v3HyZAeb3KmoVoNG05Y2bTa49BcvwTYSEhLo2LEjX331FV27drV3OTaTnJzM+PHjOXLkCCNHjqRnz554eFh25kWSJBKvJTJ131R+PfsrAAqZglx9LnqjHjlylHIlOo0OuYec4GeCGdRoEO/WebfAK3rv3btHp06d0Gg0rFq1itKlS1v01yA4JocPRYBTp97lzp11Vl50I0MmC6R/f3+eey6Y+fPnU7ZsWSv2J7iy5cuXM3DgQFasWEGLFi3sXY5dJCUlMX78eI4dO8bIkSPp0aOHRcJx+/nt9Nnch+tZ18nV52KUjAV6zkfpg4TEh+EfMrH5RLyUT14cdOzYMTp06EC7du346quvcHNz2LsTBAtz6HeKj4SEzMXDoywymfX+YCoUPoSHb+HgwUPUqVOHsLAwfvjhB5zgewbBgUiSxOeff87IkSOJj48vsoEIEBkZyS+//MK6devYvHkzVatWZd68eWg05n1zm6XJottP3XhtxWuk3UsjR5dT4EAEyNHloNKpmJc8j6qzq7L/yv7Hft7y5ctp2bIlEydOZNq0aSIQixinGCkCaDTXOXSoATrdbSRJZ9G25XIfwsJ+o1ix6PwfO3z4MF27diUoKIgFCxaIpdfCf9LpdHz44YccPXqUTZs2iT8z/5CYmMj48eM5efIko0aNonv37gVesHLh/gVilsRwL/cear1lFvJ4uXnxeYvPGdRoEJD3+zds2DA2btzI+vXrCQsLs0g/gnNxipEigIdHOcLDk/HyqopcbpmzIWUyD9zcSlC37o6/BSJA/fr1SU5Opn79+tStW5elS5eKUaPwRA8ePKB169bcunWLXbt2iUB8jIYNG7JlyxZWr17Nzz//TNWqVVmwYAFa7dPvTD1//zyRiyK5mX3TYoEIkKvPZUz8GD7f/Tm3b9/mhRde4PTp0yQlJYlALMKcZqT4iNGo49KlL7hy5SuMRjVgXvlyuTclS7YmJGQBSuXTl8gfOXKErl27EhgYyMKFCylfvrxZfQqu6cqVK7Ru3ZqYmBhmzZolptsKaP/+/YwfP57U1FRGjRpF165d/zVyzFBnUOObGtzOuW3SVKkpPOWeeO/wpk/jPowfP94qR8IJzsNpRoqPyOVKKlX6lPr1EylR4mXkck9ksoK9vJfJ3JDLvfD1rUutWmupVWv1fwYi5O3HSkpKIjIykrp16xIXFydGjQKQ9w1TVFQU77//Pt98840IRBNERUWxdetWli9fzrp16wgJCWHRokXodP//euTDXz7kfu59qwUigNqoJqdZDr2H9haBKDjfSPGfNJrrXLs2lz17JlGxohyFwgNQkDeClAESRqMKD49AnnmmJeXLD8DXN9Ts/o4ePUrXrl0pV64cCxcuJDAw0EK/EsHZbNmyhffff5958+bxxhtv2Lscp7d3717Gjx9PWloao0ePpnR0ad7Z8A4qnfW3Y7nJ3WgU2IiErgliO1YR5/ShCHlB9dZbb3H6dAoqVSoazRWMRjVyuTtKZSl8fGqjUFjubEatVsuXX37JnDlz+Oqrr+jWrZv4i1TELFiwgHHjxrF+/XqioqLsXY5L2bMDPIXIAAAgAElEQVRnD+PGj2Nn/Z0YvA0269fX3ZdVb6yiVVVx5nFR5hKhOH36dNLS0pg3b55N+z127Bhdu3alTJkyLFy4kAqmXcUhOCGj0cjIkSP56aef2LJli9Xu6Svqtp3bRtsVbck12PYmjueDnmdn15027VNwLE73TvFx7LUfLCwsjIMHD9K4cWPq16/Pd999J941ujC1Ws3bb7/Nvn372LdvnwhEK5q8b7LNAxEg8VoiF+5fsHm/guNw+pGiTqcjICCAc+fOERAQYLc6jh8/Trdu3QgICGDRokVUrFjRbrUIlpeenk7btm2pWLEiS5YscbjbIFyJRq/B70s/dEYT9yN//o9/1wORgAmzoR4KDya1nMTARgNN61twGU4/UkxOTqZSpUp2DUTIu6X8wIEDxMbGEh4ezqJFi8So0UWkpaURFRXF888/z7Jly0QgWtmJ2yfwcjNjDcDov3x8ArgBNU1rQmPQsOvSLtP7FlyG04eiIx2lpVQqGT16NPHx8cyfP5+XXnqJS5cu2bssoRD27t1LkyZNGDZsGF988QVyudP/lXF4ydeTTR8l/tNpwAcw47KbpGtJhetbcGpO/zd8+/btNG/e3N5l/E3t2rU5cOAATZs2JSIigoULF4pRoxNavXo17du3Z+nSpfTq1cve5RQZp+6cIldfyPeJR4Ew8nZlmehG9o3C9S04NacOxdzcXA4ePEhsbKy9S/kXpVLJqFGj2LFjB4sWLeLFF18Uo0YnIUkSkydPZsiQIWzbto2XXnrJ3iUVKVmarMI1kAFcAuqa97gkSegMlj1fWXAeTh2K+/bto06dOvj5+dm7lCcKDQ1l//79tGjRgvDwcObPny9GjQ5Mr9fTt29fli1bxv79+8UZmHbgJi/kqUDHgIrAfx9W9VgSEgq5ONmmqHLqUIyPj3e4qdPHcXNzY8SIESQkJLB48WJatmzJxYsX7V2W8A9ZWVm0adOGCxcusHv3bnFakZ2U8imFzJx5z0eOkTd1aiYPhQdymVN/aRQKwal/5x1pkU1B1KxZk3379vHiiy8SERHBvHnzMBqtd6ajUHDXrl0jNjaW8uXLs2nTJvz9/e1dUpFVv2x9fN19zXv4MpAF1DK//5CSIeY/LDg9pw3FzMxMTp486XRHbLm5uTF8+HASEhKIi4ujZcuWXLggNgvb0/Hjx4mKiuKtt95i4cKFKJVKe5dUJKnVanbu3MmulbvIyc0xr5FjQA2gYHcEPFZMxRjzHxacntOGYkJCAg0bNnTaPWM1a9Zk7969vPLKK0RGRjJ37lwxarSD33//nZYtWzJ58mRGjBghzrC1Ib1eT2JiIl9++SUvvPACpUqVYsSIEfjqffF0N/Pv9WtAB/Nr8nP3IzbI8RbuCbbjtCfaDBo0iFKlSjFq1Ch7l1Jop0+fplu3bnh5efHdd99RuXJle5dUJCxevJhRo0axZs0amjRpYu9yXJ7RaOTkyZPEx8cTHx9PQkICQUFBNG/enObNmxMbG0uxYsUA+OT3T5h9cDZaw9MvILY0X6Uvt4fexktpuQsEBOfitKEYFhbGggULaNSokb1LsQiDwcCMGTOYNGkS48aNo2/fvmKjuJVIksT//vc/Vq5cyebNm6lWrZq9S3JJkiRx9uzZ/BDcsWMHxYsXzw/BZs2aUapUqcc+ezHjIjW+qYFar7ZZvUq5kg8jPmTWK7Ns1qfgeJwyFO/cuUPVqlVJT093uUtdU1NT6d69O0qlksWLF4tDpy1Mo9HQvXt3zp8/z8aNG5/4RVkwz9WrV/NDMD4+HqPRSIsWLfJD0JQzgVsta8W289vQG/VWrPj/yfQyFkcspmvbrjbpT3BMTjkU2bFjB02aNHG5QASoXr06u3fvpm3btjRs2JBZs2aJd40Wcu/ePV588UU0Gg3x8fEiEC0gPT2dNWvW0KdPH6pVq0a9evX45ZdfaNSoEX/88QdXrlxh6dKlvP/++yYfkv9tm2/xdLPNmgEfpQ/vBL7DxCETefXVVzlz5oxN+hUcj1OGorNtxTCVQqFg8ODB7Nu3j1WrVtG0aVPOnj1r77Kc2vnz52ncuDENGjRg9erVeHmJd0bmyMzM5JdffmHw4MHUrVuXKlWq8P333xMSEsLq1au5desWq1ev5sMPPyQkJKRQC5fK+ZVjzitz8FH6WPBX8G9ymZyg4kEs7bWUlJQUmjZtSnR0NIMHDyYjI8OqfQuOx2lD0Rk27RdWSEgICQkJtG/fnkaNGvH111+LUaMZEhMTiYmJoX///kyZMkW8qzVBbm4u27dvZ/To0URFRVG+fHlmzpxJQEAA8+fPJz09nU2bNjFo0CDCwsIs/t+2S1gX2ldvj7fS26Lt/lUxj2JsfHsjbnI3PDw8+OSTT0hJSSE7O5vq1aszf/58DAaD1foXHIvTvVO8cuUK4eHh3Lx5s0h9cUtLS6Nbt27IZDIWL15M1apV7V2SU9iwYQMffPABS5Ys4dVXX7V3OQ5Pp9ORlJSU/04wKSmJOnXq5C+OiYqKsvk2KIPRwNvr3mZL2hZUOpXF2pUho7hncXZ13UXtZ2s/9nOOHDnCwIEDuX//PjNnziwS34wXdU4XikuXLmXLli2sWrXK3qXYnMFgYM6cOUyYMIExY8bQr18/FApxRuPjSJLEzJkzmTZtGj///DPh4eH2LskhGY1Gjh07lh+Ce/bsoXLlyvmLY5o0aeIQZwsbJSNDtw1lXtK8wt+gAXgrvSnnV45f3/2VKiWqPPVzJUli3bp1DB06lLp16zJ16lSxAM6FOV0odunShejoaHr37m3vUuwmLS2N7t27I0kSixcvJiREHEv1VwaDgUGDBhEfH8+WLVtMXuDhyiRJ4s8//2T79u3Ex8ezc+dOAgICaN68OS1atOD555+3+4XdT7P/yn7eXPMm99T3zBo1KmQK3BXuDGo0iE+bfoq7wr3Az6rVaqZPn8706dPp2bMno0aNEscBuiCnCkVJkqhQoQI7d+6kSpWnf3fn6oxGI3PmzOGzzz5j1KhRDBgwQIwagZycHN555x1UKhXr1q3L3wxelF2+fDk/BOPj41EoFLRo0YIWLVrQrFkzypcvb+8STZKry+Xbw98yZd8U7qvvk6PNQeLpX8a8ld4YJSMda3ZkePRwapU2/3DU69evM2rUKH7//XcmTJhA165dxd89F+JUofjnn3/SsmVLLl26JI7jeujcuXN0794dnU7HkiVLivRG9Js3b/Lqq69Su3ZtFixYgLt7wUcBruT27dvs2LEjPwgzMzPzR4LNmzencuXKLvH3R5Ikdl7cyfrU9ey5vIfU9FQkKe/aJ0mS0Bl1lPEpQ2T5SF6o/ALv1H6H4p7FLdZ/UlISAwcOJDc3l6+//lqciuQinCoU582bR2JiInFxcfYuxaEYjUbmzp3LuHHjGDFiBIMGDSpy37mmpKTQunVrevTowZgxY1zii35BZWRkkJCQkB+CV69eJTY2Nj8Ea9WqVST+exglI3dVd1Hr1SgVSvw9/K26ahXygnnlypUMHz6cqKgoJk+eTFBQkFX7FKzLqUKxY8eOtGnThs6dO9u7FId0/vx5unfvjkajYcmSJVSvXt3eJdlEfHw8b7/9NtOmTSsSfzZUKhV79+4lPj6e7du3c/r0aaKiovJHg/Xq1XPJgy0cmUqlYsqUKcyaNYu+ffsyfPhwfH3NvP5KsC/JSRgMBqlkyZLS1atX7V2KQzMYDNKcOXOkkiVLSpMnT5b0er29S7KqpUuXSqVLl5bi4+PtXYrVaDQaaffu3dL48eOl2NhYycfHR4qJiZHGjh0r7dy5U1Kr1fYuUXjo8uXLUqdOnaTy5ctL33//vWQwGOxdkmAipxkpHj16lLfffpvU1FR7l+IUzp8/T48ePcjNzWXJkiXUqFHD3iVZlCRJfPbZZ8TFxbF582Zq1qxp75IsxmAwcPTo0fyR4L59+wgJCcnfKxgTEyNGIQ5u//79DBgwAJlMxtdff+0yFxcUBU4TitOnT+fs2bPMnTvX3qU4DaPRyIIFCxg7dixDhw5l8ODBLjGtptVq+eCDD0hJSWHTpk2UKVPG3iUViiRJnD59Oj8Ed+3aRdmyZfNDsGnTpjzzzDP2LlMwkdFo5Mcff2TUqFE0bdqUSZMmERgYaO+yhP/gNKHYunVrunXrxhtvvGHvUpzOxYsX6dGjB9nZ2SxZssSpR1UZGRm8/vrr+Pn5sWzZMnx8rHsuprVcuHAhPwTj4+Px9vb+25VKZcuWtXeJgoVkZ2czadIk5s2bx4ABA/jkk0/w9rbuAiDBfE4RijqdjoCAAM6fP0/JkiXtXY5TkiSJhQsXMmbMGIYMGcInn3zidKPGS5cu0apVK1q2bMn06dOdaoXtjRs32LFjR34QqtXq/BBs3rw5lSpVsneJgpVduHCB4cOHk5iYyFdffcVbb71VJFYFOxunCMX9+/fTt29fjhw5Yu9SnN7Fixfp2bMnDx48IC4ujlq1zN/EbEvJycm0bduWYcOGMWDAAHuX85/u3bvHrl278kPw5s2bNG3aND8Ea9SoIb4gFlEJCQkMHDgQb29vZs6cSUREhL1LEv7CoUJRkiQMhmyMRjUymRsKhS9yuZKJEyeSkZHB1KlT7V2iS5AkiUWLFjF69GgGDRrEsGHDLDJq1Ouzyc4+QlbWIbKzj2AwZAMylMqS+PlF4ucXjo9PLeRy0zbVb9q0iR49erBw4ULatWtX6DqtITs7mz179uSHYFpaGtHR0fkhWLduXaca2QrWZTAYiIuLY8yYMbz88st88cUXYsrcQdg1FCVJIjNzP+npP5GRkUBOzkkkSYtMpkCSjIARD48gDh7Mplq1TrRsOQGFwjnfITmiS5cu0atXL+7du0dcXByhoaEmtyFJBu7d+43LlyeTmbkPudwLo1GDJGn+9nlyuTcymQKjUUupUm9QocIQ/Pzq/Wf733zzDZ9//jk//fQTDRo0MLk+a9FoNBw4cCA/BI8ePUpERER+CDZo0KDInqgjFFxmZiYTJ05k8eLFDBkyhEGDBtn8FhLh7+wSikajhhs34rhyZTJa7S2Mxlzg6fcEyuU+gMSzz3ahYsVP8PISp9RbgiRJfPvtt4waNYqBAwcybNgwlEplgZ69e3cLqandMRpzHo4KC0qBXO6Bt3d1atT4ER+ff28XMRqNDB06lC1btrBlyxa7v3PT6/UcPnw4//zQ/fv3U6NGjfxTY6Kjo8XiCcFsZ8+e5ZNPPuH48eNMmTKFDh06iOl1O7F5KGZmJpGS0hGdLh2jMceMFtyQy5UEBY2lYsWhyGRiSsoSLl++TK9evUhPTycuLo7atR9/vxyATpfBn39+yN27mzAaC3O/nQy53JOgoDFUrDg8//dSpVLRuXNn7t69y4YNG+yyHUGSJE6ePJkfggkJCQQGBuafGhMbG0vx4pY7R1MQALZv387AgQMJCAhgxowZ1K1b194lFTk2C0VJMnL+/CiuXZv1cGRYOHK5D15elald+xc8PcXVQJYgPbyKasSIEQwYMIDhw4f/a9SoVl/i8OFodLr0f02Rmksu98bfvyG1a2/m7t0s2rRpQ9WqVfn222/x8PCwSB//RZIkzp07lx+CO3bswM/PLz8EmzZtyrPPPmuTWoSiTa/Xs2jRIsaNG0fbtm2ZOHEipUuXtndZRYZNQlGSDJw69a4FRhb/pECpfIZ69fbh7S1uoreUK1eu8MEHH3Dr1i3i4uKoU6cOAGr1ZQ4dikCnuwcYLNqnXO6JQlGd7t0f8Oab7/LZZ59Zffro2rVr+SEYHx+PXq/PD8FmzZqJg50Fu7p//z6fffYZP/zwAyNHjqRfv37iPbUNWD0UJUkiNbUbd+6ssXAgPiJDqQwgPPwQnp4VrNB+0SRJEnFxcQwbNox+/foxbNhAjhypg0ZzFUsH4iMaDeh04bz6arJV2r97927+XsH4+Hju3LlDs2bN8oMwJCREvMcRHE5qaipDhgwhLS2NadOm8eqrr4o/p1Zk9VC8cWMpaWkfmfn+sKAU+PrWJTz8IDKZ3Ir9FD1Xr17lgw8+oFGjJGJjswDLTJk+iVzuTY0ayyhVqvBbL7KyskhISMgPwfPnzxMTE5MfgnXq1EEuF39eBOewdetWBg0aRIUKFZgxY4bT7DF2NlYNRY3mOgcPVjNxZaJ55HIfKlWaSIUKA63eV1GTkbGXw4ebI5drbdKfm1txGjY8i1Jp2ulFarWaffv25Yfg8ePHadCgQX4IRkREFHhlrSA4Ip1Ox7x585g4cSJvvvkm48ePF6d8WZhVQ/HYsVe4f/8PQG+tLv5GLvemQYMzeHqKQ3ctKTk5nOzswzbrTybzIDBwAMHBXz318/R6PUlJSfkhePDgQUJDQ/P3CjZu3BgvLy8bVS0ItnP37l0+/fRTVq9ezZgxY+jTp4/4hs9CrBaKubnnSUqqhdGotkbzj5X3xXQgwcGTbNanq8vJSeHQoUiLrBg2hUJRjOjo2387/cZoNHLixIn8Q7R3795NpUqV8kMwNjYWf39/m9YpCPaUkpLCoEGDuHr1KtOnT+fll1+2d0lOz2qhmJY2iOvX5yJJtplye+RxX0wF86Wm9uTmzTistbjmSRQKP0JCFvLgQf38ENyxYwclS5b825VKpUqVsmldguBoJEnil19+YfDgwYSEhDB9+nSqVatm77KcllVCUZKM7NlTHIMhy6zn4+Nh6VK4fRtKlIDhw+HhroD/pFD4Ub369xZZqCHA3r2l0enumPxcZiZMmQLJyVCsGPTsCS1bmtbGwYOezJ4dkH9qTLNmzahQQawwFoTH0Wq1zJ49m0mTJvHee+8xduxYcQ+nGayy9C4399zDs0tNl5wMCxfmBeHmzTBzJphyTq7BkM2DB7vN6lv4O53uLnr9A7Oe/fprcHOD9eth9Oi838cLF0xrIyqqOJcvXyYuLo4uXbqIQBSEp3B3d2fIkCGkpKSgUqmoXr068+bNQ6+3zZoOV2GVUMzKOmT21oi4OOjcGWrWBLkcSpXK+yg4iYyMBLP6Fv4uK+swcrnphxPn5kJCAnTvDl5eULs2NG4M27aZ1o7RmG6lva2C4LpKly7NggUL+O2331i1ahX16tVj+/bt9i7LaVgtFM3ZhmEwwJkz8OABvPsudOyYN+LQmLg1TqU6bXLfwr+p1ReRJNO/y7x6FRQK+OvALjgYLl40rR253Au1+orJ/QuCAHXr1mXHjh2MGzeOXr160a5dO86ePWvvshyeVa5e1+luA6a/qrx/H/R62LULZs3Km34bPRp++CHvnVRBGQwqfvjhByRJyv8wGo1P/feCfI412rBXvwVpIyLiCi++mIupK71zc+GfF0b4+IDK5EGfzKarlwXB1chkMl5//XVat27NjBkzaNSoEd27d2fMmDFipfYTWCUUzRldADw6+7l9e3i0H7VjR/jxR9NCUSaT+O23rchkcmQyGXJ53j8fffzz3wvyOQVtQ6FQmPyMJfq1ThubgLmYeoqNl9e/A1Cl+ndQ/jcJuVzsvRKEwvL09GTkyJF07dqVUaNGUa1aNSZMmEC3bt3E5df/YJVQNPciYD+/vPeHfz3Wz5wj/mQyN378cZlZNQj/7/btdM6c+Q6DwbRQDAzMmwq/ejXv/wOcPQvPPWda/5Kkw81NnNYhCJZStmxZlixZQnJyMgMHDmTu3LnMnDmT2NhYe5fmMKzyTtHHp5ZZCzQAXn4ZNmzIm0rNyoK1ayEqyrQ23N3LmdW38He+vvWQJNP3J3p5QZMmsGRJ3lTqiROwbx+88IJp7chkHnh4lDG5f0EQni4iIoLdu3czbNgwOnfuzJtvvslFU1/6uyirjBR9fcORydwB098HdemSt9Cmc2dwd4emTeG990xrw8+vgcn9Cv/m5RUMmLe1ZuBAmDwZOnQAf/+8f69UybQ2fH3DzOpbEIT/JpPJePvtt2nTpg1Tp04lPDycPn36MGLECHx9fS3e3/3c+xy+cZjk68mcTj9Nri4XpUJJGd8yRJaLJLxcOMHPBNv9BhCrbN7X67PZu/cZs98tFoZM5klw8GQCA/vZvG9XdOTI8zx4YPstLjKZJ889N5agoJE271sQiqKrV68yYsQIduzYwRdffEHnzp0LfYuM1qBl3al1fLX3K07dOYWX0gu1Xo3W8P8nncmQ4evui0EyoJQr+TDiQz6K/IgKxeyzL9lqx7wdPhxNZuY+azT9VDKZJw0anMbL6zmb9+2K0tM3cvr0e2afTmQumcyTRo0uiOlTQbCxAwcOMGDAACRJ4uuvvybK1PdX5B09t+jwIoZuG4okSWRpC/71w0PhgUwm45Uqr7Dg1QWU8rHtUY5Wu0yuYsXhKBR+1mr+iYoVixKBaEElS7Z+OBVuSzJKlHhRBKIg2EGjRo3Yv38//fr1o2PHjrz77rtcuVLw/cKXH1ymyZImDP5tMJmaTJMCEUBj0KDWq9mctpmqs6uy7tQ6U38JhWK1UCxZsjVyuYe1mn8sudyXChWG2bRPVyeTKQgKGgOYt3DKHHK5J0FB/7NZf4Ig/J1cLqdz586kpqZSuXJl6taty/jx41H9x2bjxKuJ1J5Xm8RrieToCnexvNag5YHmAV1+6sKArXkjV1uwWijKZAqqVp2LXG7y5jQz+3PDz68uJUq8ZJP+igqVSsXXX1/m4kU9kmT9F+ByuTdly36Av3+E1fsSBOHpfH19mTBhAocPH+bUqVNUr16dFStWPDagEq8m0uL7FmRqMtEbLbeeRKVT8e3hb+m7ua9NgtFqoQhQunRHihdvZpPpN5nMgxo1ltt95ZIr2bVrF2FhYVy/fpOWLXejUFh7tChDqSxJ5cpfWrkfQRBMERQUxKpVq1i2bBlTp04lJiaGpKSk/J+/8uAKL/74YqFHh0+i0qn44fgPTN0/1Srt/5VVQxGgevUlD98tWi+s5HJvQkK+wdNT3KJgCZmZmfTp04d3332XadOmsXz5cgIDG1G9+lLkcuvdZK9Q+FOnzm8oFNbrQxAE8zVp0oSDBw/So0cP2rRpQ9euXbl27Rqd1ndCpbPu4f05uhzG7RhHanqqVfuxeii6u5eiXr3dKBT+WCMY5XJvKlYcQZky71u87aLo119/JTQ0FL1ez8mTJ2nTpk3+z5Uu3ZGQkAVWCEYZCkUx6tbdiY9PDQu3LQiCJSkUCrp3786ZM2d49tlnCXk7hMTLiRadMn0StUHNm2vexGC03qXnVtuS8U85OakcPdoEvT4LSTLx2osnkMu9eO658VSsONQi7RVld+/eZdCgQezZs4dFixbRokWLJ37uvXu/c+rU2xgMqkL/Xsrl3nh6Pkdo6E94e1ctVFuCINiW1qAl4KsAsnS227Ll6+7LkrZLeKPmG1Zp3+ojxUd8fKrToMEZSpZ8tdCLb+RyL9zdy1Knzm8iEC1g7dq11K5dmxIlSnDixImnBiJAiRIv0rDhOQIC2jz8vTT9j5FM5o5c7kXFiiOJiDgmAlEQnNBPqT8hyWyzKvSRbG02k/dOtlr7Nhsp/lV6+kbS0j5Cr88w6d5FudwHMFK2bE8qV56EQmGbla2u6ubNm3z00UecOnWK7777jsaNG5vcRmZmIleuTOXu3V8ABUbj0160y/MPiy9bthfly/cTe0oFwYmFLwjn8M3DNu/Xy82LQx8cokYpy79usUsoQt6JBxkZO7l8eTIZGTvyrwj6a0jKZB4YDHIkSY2PTyUCAwdRpkwX3NzEPWCFIUkS33//PUOHDqVXr17873//w9OzcCtLtdp07t79hQcP9pKZuRe1+iJGoxZJAr1eTokSdSlWLJZixaIpWbKVzfewCoJgWZmaTAImB6Az6kx/+A6wGbgBeAMvAibkm7vCnS+af8GQxkNM7/s/2C0U/0qSDKhUZ8jKSkatvojBkI1M5oFSWRK1OpAWLT7k0qU7YruFBVy+fJnevXtz8+ZNFi9eTL169aza35o1a1i1ahVr1661aj+CINjWrou7aLOyDZmaTNMeNADfABFAI+AisALoDQQUvJnXQl5j4zsbTeu7AKxyS4apZDIFPj418fGp+YTPGMzZs2epWlW8dzKX0Whk/vz5fPrppwwaNIihQ4eiVFr/At+AgADS09Ot3o8gCLaVfD0Zjd6MhXbpQBYQRd6GhMpABeA40Ny0/q3BIULxv0RHR7Nv3z4RimZKS0ujZ8+e6HQ6EhISqFHDdtseRCgKgms6c/cMGhMvIH+q2yZ+eo6JDxSQzVafFkbjxo3Zt8/2N244O71ez5QpU4iKiqJDhw7s3r3bpoEIULJkSe7evWvTPgVBsD6zN+sHAD7AXvKmUs+SN4Vq4qtJg2TAKJl33+vTOMVIsXHjxixYsMDeZTiVEydO0L17d/z9/Tl48CCVK1e2Sx2PQlGSJPFOWBBciFJu5usXBfA28Ct5wVgOqIXJaSR7+D9Lc4qRYlhYGJcuXSIjI8PepTg8rVbLuHHjaN68Ob179+aPP/6wWyACeHh44OnpSWamiS/jBUFwaGX9yiI3N0LKAN2A4UBn4D5Q3rQmfN19rfKNtlOEopubG5GRkRw4cMDepTi0pKQkwsPDOXToEEeOHKFnz54OMToTU6iC4HoiykXg6+Fr3sM3yZsu1ZI3WswG6prWRM1ST1qYWThOEYqQN4W6d+9ee5fhkFQqFUOHDuW1115j1KhRbNy4kcDAQHuXlU8sthEE1xNeNhydwYw9ipC30nQaMAW4QN5o0YTpUzlyYoNizev7PzjFO0XIW4E6dar1rw1xNgkJCfTo0YOIiAiOHz9O6dKl7V3Sv4hQFATXU7FYRbyUXuTqc01/+MWHH2bycfeh6XNNzW/gKZxmpNioUSOSkpLQ661/ErszyMzMpG/fvnTq1Ilp06axYsUKhwxEENOnguCKZDIZH0V+hIfC9qdTuSvceTG4EKn6FE4Tis888wwVKlTg+PHj9i7F7rZu3Urt2rXRarX/ut7JEYmRoiC4pg8jPrR5n55unvRv2I2pOE8AABBxSURBVB83uXUmOp0mFOH/N/EXVffu3eP999+nT58+fPfdd3z77bcUL17c3mX9JxGKguCayvmVo131djYdLbrJ3awaxk4VikV5E/+6desIDQ2lWLFinDhxgpYtW9q7pAIT06eC4Lrmtp6Ll9LSF48/no/Sh9mvzKa0j/VeFTldKBa1Fag3b97kjTfeYPTo0axZs4ZZs2bh62vmMmg7ESNFQXBdJbxK8H277/FWWvcqP6VcSYPyDXg/7H2r9uNUoVi1alVUKhVXr161dylW9+h6pzp16hASEsLRo0eJjo62d1lmEaEoCK7ttWqv0a9BP6sFo5vcjXJ+5VjdcbXV9147zZYMyFvt1LhxY/bv30/Hjh3tXY7VPLre6caNG2zdupX69evbu6RCEdOnguD6vmzxJVqDlgWHFph/LupjKOVKyvmVY1+PfQR4m3C3lJmcaqQIrj2FajQamTdvHuHh4cTExJCUlOT0gQhipCgIRYFMJmP6S9OZ1HIS3m7eyGWFjxcfpQ8xFWNI/iCZcn7lLFDlf3OIS4ZNsWfPHgYPHszBgwftXYpFPbreSaPRsHjxYmrWtM4RRvag0Wjw8/NDo9E4xLFzgiBY19l7Z3lr7Vv8efdPsrXZJj/v5eaFQq7gm1bf0LlOZ5t+3XC6kWJ4eDgpKSmoVJYbntuTXq9n6tSpREVF0a5dO/bu3etSgQh5h4J7eHiQlZVl71IEQbCBKiWqkNQriWUdlhFdIRpPN088FZ5PfUYuk+Pn7keAdwCjm4zmfP/zdAnrYvNvpJ3qnSKAl5cXtWvXJjk5mdhY65x9ZysnT56ke/fu+Pr6kpiYSHBwsL1LsppHU6j+/v72LkUQBBuQy+S0qdaGNtXacPbeWbakbSHhUgIHrx3kZvZN9EY9CrkCH6UPoaVDeT7oeWKDYmlZuSUKucJudTtdKML/v1d01lDUarV8+eWXzJkzhy+++MJhbrOwpkehaM9rrARBsI8qJarQv2F/+jfsb+9S/pNThmJ0dDRxcXH2LsMsSUlJ9OjRg4oVK3LkyBGHus3CmsQKVEEQnIHTvVMEiIqKYt++fTjTGqHc3FyGDRvGa6+9xogRI9i0aVORCUQQK1AFQXAOThmK5cqVw9/fnzNnzti7lAJJSEggLCyMy5cvc/z4cTp16uTy06X/JEJREARn4JShCM5xOHhWVhYfffQR77zzDpMnT2blypUOe72TtYnpU0EQnIHThqKjHw7+22+/ERoaSm5uLidPnqRdu3b2LsmuxEhREARn4JQLbSAvFGfPnm3vMv7l3r17DB48mJ07d7Jo0SJefNE6F2E6GxGKgiA4A6cdKdauXZvr16871JTc+vXrCQ0Nxd/fn5MnT4pA/AsxfSoIgjNw2pGiQqGgQYMGHDhwgNatW9u1llu3bvHxxx9z/PhxVq9eTUxMjF3rcURipCgIgjNw2pEi2P9wcEmS+OGHH6hTpw7BwcEcPXpUBOITiFAUBMEZOO1IEfJWoH7xxRd26fvKlSv07t2ba9eusWXLFsLDw/+vvbuNjau68zj+u/faM5PxOB4cJ87YMUKWE7wJIjThKRJNSF7QLUFVUSq6u2lRi4OWEiroSiUS+6Kr7CKW7gNB2wVSdanKbqtWaiTERi2ogoXtSpCEZB0gD9BQkjgb7MRBsT0zHj/MOfvCU4hKCJ47T8fM9yPxIpHP+Z+gSL/8z73n3JqsY674w/aptbbujqMAmDvmdKd4ww03aP/+/ZqamqpaTWOMnnrqKa1atUpr1qzRvn37CMRZ4FJwAHPBnO4UE4mI1q9v1759f61k8pQmJk7L2in5/jzF48s0f/4aNTevVjzeK68M3/Y6duyYtmzZolwup5dfflkrVqwow5+ifnApOADXzbnvKUpSJnNIAwOP6cyZnymXm1ZDg+T7H+8WgyAha62CoElLljygVOpuRSLFf7k5n89rx44deuSRR/TQQw/p/vvvVxDU7hb3ueraa6/Vk08+qeuuu67WSwGAi5pTneLExP/pyJE7NTr6qoyZlJRXJPLJP5/Pz3zc0piMTpz4W504sV0dHfepu/vv5PvRWdV866231NfXp3g8rtdee009PT1l+JPUJ162AeC6OfFM0Vqr999/Wnv29Gpk5L9lzLikfFFzGDMuY3I6ffoJ7d3bq9HR1y/585OTk9q+fbvWr1+vvr4+vfjiiwRiiQhFAK5zvlO01uidd76loaGfyphMyfMZk1Uud1z9/evU2/uMFi3a9LGfef3113XXXXepq6tLBw4cUFdXV8l1wQF+AO5zulO01urtt+/W0NB/lCUQL2RMVkePfl1nzuz68PfGx8e1bds2bdy4UQ8++KB2795NIJYRnSIA1zndKQ4M/IPOnPm5jMlWZH5jxnX06J2aN69b/f1p9fX16ZprrtEbb7yh9vb2itSsZ21tbTp48GCtlwEAn8jZUMxkjur48b8pPD+sHGOyeuWVm3XvvU16/PF/1e23317RevWM7VMArnMyFK3N6/DhO2TMRFXqRaMZPf/8N7V8OYFYSWyfAnCdk88Uz537lXK59ySZqtRrbMxreHinpqbOV6VevSIUAbjOyVA8efLvPzxjWD2+BgefrnLN+sL2KQDXOReK4+PvKp0+EHr8qVPSLbdIDz9c3DhjshoY+CfNwQt+5owFCxZoeHiY/8cAnOVcKH7wwW9UyrIef1zq7Q03dnr6vHK5E6Fr49JisRiXggNwmnOhODLy29BHMF56SWpqklatClfb8xqUTu8PNxizwhYqAJc5F4qjo3tCjctkpB//WNq6NXztfH4sdH3MDi/bAHCZc6E4NTUUatzTT0u33iotXFhKdats9nelTIBPQSgCcJlzoWhM8R8MPnZM2r9f+spXylG/spcF1Du2TwG4zLnD+57XIGuLO7Tf3y8NDUlf/erMr8fHJWOkEyekH/6wuPqz/aQUwqFTBOAy50KxoSGpycniLv++7TZpw4aPfv2LX0iDg9J3vlN8/Wh0SfGDMGuEIgCXObd92ty8uugxsZjU2vrRf/PmSZGIlEwWN08QJDR//o1F18fssX0KwGXOdYrJ5Dp98MELRW+hXugb3whfP0woY/boFAG4zLlOMZlcJ8+rVVb7isevrFHt+kAoAnCZc6GYSKxSNNpZ9bqeF1FHxz3yvKDqtesJ26cAXOZcKHqep8sv3ybfb6pyXV+dnSWc/Mes0CkCcJlzoShJixb9uYIgUbV6nhfVggVfUix2edVq1isuBQfgMidDMQjmafnyn8n351Wt3rJlT1alVr2LxWKKRCJKp6v9aTAA+HROhqIkXXbZBi1a9GcVD0bfj6u39ydqbGytaB18hC1UAK5yNhQlaenSJ5RIrJTnVeaWGd+Pq6vru2pr+1JF5sfFEYoAXOV0KAZBTFdf/Rs1N3+u7B2j78e1ZMkDuuKK75V1Xnw63kAF4CqnQ1GSGhoSWrnyv9Te/vWyBKPnNcj3m7R06Q/U3f2wPM8rwypRDDpFAK5yPhSlmY7xyit36uqrn1ckkpLvh3kz1ZPvN2n+/DW6/vqjSqW+WfZ1YnYIRQCucu6at0tJJtfqxhvf09mzv9TJk49qfPxdSfYSn3vyFARNMmZKra23qKvru2ppuYnusMbYPgXgqjkVitLMp53a2zervX2z0um3NDLyPxoZ+a1GR/doevq8rJ2W7zcqEulUS8vn1dKyRsnkBkWji2u9dBS0tbXpzTffrPUyAOBj5lwoXiiRuEqJxFXq7Lyn1ktBEdg+BeCqOfFMEZ8tbJ8CcBWhiKqjUwTgKkIRVUcoAnCVZ7mZGVWWy+XU0tKiXC7Hm8AAnEKniKqLxWJqbGzkUnAAziEUURNsoQJwEaGImuANVAAuIhRRE3SKAFxEKKImCEUALiIUURNsnwJwEaGImqBTBOAiQhE1QSgCcBGhiJpg+xSAiwhF1ASdIgAXEYqoCUIRgIsIRdQE26cAXDSnPzKMuWd6ekzp9P9qcvJVbd48qMOH/0KeF1EksljNzdequXm1YrEruCgcQE3wlQxUnDFTGh5+VgMD31c6fVC+H5cxOVk7ccFP+QqChKydlu9HlErdo87OrYrFltRs3QDqD6GIirHWanDwJ3r33b+StdPK58dmPdbzopKkBQs2atmynYpE2iq1TAD4EKGIipiYOK0jR76m0dG9MiYTeh7Pi8j356m399+0cOGmMq4QAD6OUETZjY0dUH//BuXzGUnTZZnT95uUSm1RT89jPG8EUDGEIspqJhDXKZ8v/weEfT+u9vY7tWzZEwQjgIrgSAbKZmLidKFDLH8gSpIxWQ0NPaOBgX+syPwAQCiiLKy1OnLka4Ut08oxJqvjx7+nTOZIResAqE+EIspiaOjfNTq6V+V6hngpxuR06NAdsjZf8VoA6guhiJIZM61jxx4o6S3T4ljlcu/p7NldVaoHoF4QiijZuXPPydrKd4gXMiajkye/X9WaAD77CEWU7OTJR4s6mF8u2exhZTKHq14XwGcXd5+iJPl8Run0gVBjBwelHTukQ4ekxkZp3TrpvvukIJjdeGvzGh7+TzU1LQ9VHwD+GJ0iSpJO98v346HG7tghJZPSrl3Sj34kHTwoPfvs7MdbO6mRkVdC1QaAiyEUUZKxsf2ydjLU2Pffl26+WYpEpNZW6frrpePHi60frksFgIshFFGSbPZtGZMLNXbTJumll6RcTjp7VtqzZyYYizE1dUZcygSgXHimiJLk89nQY1eulHbvljZulIyRvvAF6aabip/H2ml5XmPodQDAH9ApoiS+Hy6MjJG2bZPWrpV+/euZZ4ljY9LOncXOZOV5/NsOQHkQiihJY+NihflrNDYmDQ1JX/7yzDPFlhbpi1+c2UIthu/HuRwcQNkQiijJ/PmrFQSJose1tEiplPTcc1I+L6XT0gsvSN3dxc0Tj/9J0bUB4JMQiihJIrFa1k6FGrt9u7R370y3uHnzzPnErVuLmcFTMvn5ULUB4GJ4GIOSRKOdCoImGTNe9NienpmzimEFQULJ5M3hJwCAP0KniJJ4nqeOjq3y/VgNagdqbb216nUBfHYRiihZR8c9VT8r6HlRdXTcF/rtVwC4GEIRJYtGF2vhwk3yvGjVanpegzo7761aPQD1gVBEWSxd+gMFQbg7UIvl+03q6flnRaOpqtQDUD8IRZRFY+Nl6u19JvTl4LPXoETiGqVSd1e4DoB6RCiibNrablNn57crGIyBIpF2XXXVLg7sA6gIQhFl1d39iDo6/rICwdioSCSlVateVSTSXua5AWCGZ/nEACrg1Kl/0e9/v03GTEgyJc3l+01qbv6cVqz4JYEIoKIIRVRMNntMhw/fofHx3ymfTxc9fubsY6CenseUSm1hyxRAxRGKqChrjYaHn9PAwKNKpw/KWiNrJy4xwlcQNBWOXHxbHR3fUjS6uGrrBVDfCEVUTTb7js6d+5XOn39FY2P7NDU1JGunNROEccXjK5RMrlVLy1q1tv6pfJ9bCAFUF6GImrLWsi0KwBm8fYqaIhABuIRQBACggFAEAKCAUAQAoIBQBACggFAEAKCAUAQAoIBQBACggFAEAKCAUAQAoIBQBACggFAEAKCAUAQAoIBQBACggFAEAKCAUAQAoIBQBACg4P8BE44yWQnzR6QAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcUAAAE1CAYAAACWU/udAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VNXWx/HvnCnJpJCE3kMNJCA1BEEpigUUpGuiIoKCvCqKBAtXLNer2BARFJEiqGACAakWQGlKCwQInQBKDSUQSG8zc94/gAhSzEymZWZ97pPnGsjea6mYX/Ype2tUVVURQgghBIqrGxBCCCHchYSiEEIIcZmEohBCCHGZhKIQQghxmYSiEEIIcZmEohBCCHGZhKIQQghxmYSiEEIIcZmEohBCCHGZhKIQQghxmYSiEEIIcZmEohBCCHGZhKIQQghxmc7VDQjhDlRVZffZ3WxJ3cL64+tJSk0ipygHVVXx1/vTslpL7qh1B21qtKF5leZoNBpXtyyEcACNHB0lvFl2YTbfJX/Hxxs+5mzOWQByinJu+LV+ej80aChvLM/L7V/mieZPEOQb5Mx2hRAOJqEovJKqqnyb/C3Dfx6ORbXcNAhvxl/vD8C4+8bxTOtnZOUohIeQUBRe53T2aR5d8CiJJxOtDsN/8tf707xqc+L7xlMrqJadOhRCuIqEovAqB88f5M6Zd5Kel47JYrLLnDpFRzlDOdYNWkeTyk3sMqcQwjUkFIXXOHLxCJFTI0nPS0fFvn/sNWgI8gli85DNhFUIs+vcQgjnkVAUXiHflE/4F+EcyziGRbU4pIYGDVUDqnJw+EH8Df4OqSGEcCx5T1F4hTGrxnA256zDAhFAReVi/kVGLh/psBpCCMeSlaLweFtTt9JxZkfyTHlOqWfUGVn++HI6hHZwSj0hhP3ISlF4vP/89h+nBSJAnimPV3991Wn1hBD2I6EoPNqJzBOsO7rO6XW3n97OwfMHnV5XCFE6EorCo03eMtm2gWnALOB94DNgn3XDzRYzExMn2lZbCOEyEorCoy1LWUaBucC6QWYgDggDXgV6AD8A50o+RZGliJ8P/mxdXSGEy0koCo9ltphJOZ9i/cBzQBbQjkv/hdQDagE7rZvmWMYx8k351tcXQriMhKLwWCnnU9Br9fab8Kx1X27UG9l1Zpf96gshHE5CUXisU9mn0Gq01g+sCPgD67l0KfUQcAQosm4aDRpOZ5+2vr4QwmXkPEXhsQrNhbYN1ALRwM9cCsbqQBOs/q9FRbX+fqYQwqUkFIXHMmgNtg+uCgy66vPpQAvrptCgwUfrY3sPQgink8unwmNVC6iGWTXbNvg0ly6XFnJptZiN1aGoolI1oKpt9YUQLiErReGxwiqEUWS28kbgFTuBbVy6pxgKDMDq/1ryivJoVqWZbfWFEC4hoSg8llbRElYhjF1nbXgC9L7LH6VQO6g2Pjq5fCpEWSKXT4VHe6jRQy65r6dX9HRr2M3pdYUQpSOhKDzasMhhLqmrVbS8EPWCS2oLIWwnoSg8Ws1yNekY2tHpdVtWbUnDCg2dXlcIUToSisLjvd/lfYw6o9PqGXVGPrr3I6fVE0LYj4Si8Hitq7fmuajn8NP7ObyWUWdkYPOB3Fn7TofXEkLYn0ZVVdXVTQjhaAWmAsK/COdoxlEsqsUhNTRoqBZYjZTnU/A3+DukhhDCsWSlKLyCj86HVQNXEeIbgqKx/x97DRqCfIJYPXC1BKIQZZiEovAadYLrsOnpTVT0q4hesd/pGTpFR4gxhPVPrSesQpjd5hVCOJ+EovAqDco3IHlYMp1CO+GvL/2Kzl/vz+01byd5WDIRlSLs0KEQwpXknqLwSqqq8l3ydwxaMAi9Xk+Bat1pFlcCdfz94xnSaggajcYRbQohnExWisIraTQaKpysQKMljZjQbQL1Qurhr/e/5erxyu+HBoXy4T0fkhqbytDWQyUQhfAgslIUXslisRAZGcmYMWPo06cPqqqyN20vW1K3sOH4BrambiWnMAcVFX+9Py2rteSOWncQWT2SZlWaSRAK4aEkFIVXWrBgAWPHjmXr1q0ScEKIYm4biqp66dRyRaOgV/TyjUvYjdlsplmzZowbN45u3WTTbiHE39zm6Ki/LvzFwv0LWXNkDVtTt3I6+zSKRkFFRdEo1A2uS/ta7elcpzN9wvtQzqecq1sWZVRcXBzBwcF07drV1a0IIdyMS1eKqqqy/PByPvjjAzaf3Fy8OryVAH0AZtVMdNNoRrUfJY/BC6sUFRURHh7OtGnTuOuuu1zdjhDCzbgsFE9mnmTAwgFsObmF7KJsq8frFB16Rc9zUc/x7l3vymGuokSmT59OXFwcv/32m6tbEUK4IZeEYvzueIYsHUK+KR+TxVSqufx0flQOqMzSmKU0rdzUTh0KT1RQUEDDhg2ZO3cu7dq1c3U7Qgg35PT3FD/d9CmDFw8muzC71IEIkGvK5cjFI7Sf0Z7Ek4l26FB4qmnTptGsWTMJRCHETTl1pThl6xRiV8SSW5TrkPkDDYH8Puh3mldt7pD5RdmVm5tLgwYNWLZsGa1atXJ1O0IIN+W0leL2U9sZuXykwwIRIKswi25zujm0hiibvvjiC9q3by+BKIS4JaesFAvNhUR8EcHhC4cdXar4kNcvu3/p8FqibMjMzKRBgwasWbOGiAh5WlkIcXNOWSm+t+49TmWfckYp8kx5fJP8DZtPbHZKPeH+PvvsM+6//34JRCHEv3L4SrHAVECljyuRVZjlyDLX0KDhwbAHWRqz1Gk1hXtKT08nLCyMTZs20aBBA1e3I4Rwcw5fKS7YtwAV5771oaKy8vBKTmU5Z3Uq3Ne4cePo3bu3BKIQokQcvs3b+I3jyS60/uV8FgB/AYVAAHAH0LrkwzVomLVjFqM7jLa+tvAIZ8+e5auvvmL79u2ubkUIUUY4dKVospjYdXaXbYM7ACOA/wAxwCogteTD8835rPhzhW21hUf44IMPeOyxx6hdu7arWxFClBEOXSnuP7cfg9ZAobnQ+sGVr/przeWPdKB6yadIPp1sfV3hEU6cOMGsWbPYs2ePq1sRQpQhDg3FHad3lG6CZcAOwARUBRpaNzy3KJe0nDQq+VcqXR+izHnvvfd4+umnqVatmqtbEUKUIQ4NxQt5FygyF9k+QXfgAeA4cASru9Vr9VzMvyih6GX++usv5s2bR0pKiqtbEUKUMQ6/p1jqJ08VIBTIBLZYN1SDhiJLKUJZlEnvvPMOzz//PBUqVHB1K0KIMsahK0VfnS9ajdY+k1mAC1YOUS346nztU1+UCQcOHGDZsmUcPHjQ1a0IIcogh64U64XUQ6/VWz8wG9gFFHApDA8Bu4G61k1TaC6kRmAN6+uLMuutt95i5MiRBAcHu7oVIUQZ5NCVYuvqrck35Vs/UANs5dKDNioQDHQFGls3TWhwqBw+7EV27tzJmjVrmDFjhqtbEUKUUQ4NxYp+FQk0BHI+77x1A/2BQaWv37Jiy9JPIsqMN998k9deew1/f39XtyKEKKMcvs1b3/C+6DQO3zjnOjqzjh8/+pG77rqLyZMnc/r0aaf3IJxny5YtbN26lWHDhrm6FSFEGebwUBxx+wjb7iuWUkhgCGf+OMOLL77Ihg0bCA8Pp1OnTnz++eecOiV7onqaMWPGMGbMGHx95cEqIYTtHB6K4ZXCaVK5iaPLXMOoMzLi9hEE+AfQq1cvZs+ezalTp4iNjWXz5s1ERETQsWNHJk2aRGqqFXvHCbe0bt06Dh48yODBg13dihCijHPKIcNbTm6h06xO5JnyHF0KgCr+VTj0wiECDAE3/P2CggJWrFjB/PnzWbp0KREREfTv359+/fpRo4Y8rVqWqKpKp06deOqppxg4cKCr2xFClHFOCUWA2BWxTNkyhVxTrkPrGHVGfnz0R+6qe1eJvr6goIBff/2VhIQElixZQnh4eHFA1qxZ06G9itJbuXIlw4cPZ/fu3eh0zr93LYTwLE4LxQJTAU2/bMqRi0cwWUwOqeGn92NAswFM6T7FpvGFhYXXBGSjRo3o378/ffv2lZMW3JCqqrRt25bY2FgeeeQRV7cjhPAATgtFgFNZp4icGsnZ3LN2D0ajzsjdde9mcfRitErpd9EpLCxk1apVJCQksHjxYho0aFC8ggwNDbVDx6K0lixZwhtvvMH27dtRFIffHhdCeAGnhiJAalYqd359J6ezT9vtHqO/3p9uDbsR1zcOnWL/S2hFRUXFAblo0SLq169fHJB16tSxez3x7ywWCy1btuR///sfDz30kKvbEUJ4CKeHIkBOYQ4jV4zku+TvShWMOkWHj9aHCV0n8FTLp9BoNHbs8saKiopYvXo18+fPZ+HChdSpU4f+/fvTv39/6ta1ch86YbN58+Yxbtw4Nm/e7JR/70II7+CSULxi3dF1DFo8iDPZZ8gtyi3xiRoGrQFFo9CxdkemPzSdWkG1HNzpjZlMJtasWUNCQgILFy6kdu3axQFZr149l/TkDUwmE02bNmXixIncd999rm5HCOFBXBqKcOlhiQ3HN/Dxho/56eBPxXuVZhdmF3+NggJFoPfR46P3YUirITzX5jnqhrjPysxkMrF27Vrmz5/PDz/8QI0aNYoDskGDBq5uz6N88803zJgxg7Vr18oqUQhhVy4PxauZLCb2pu0lKTWJvWl7ySrMQqfoCPENYdOiTXRs2JExz49x+2+EZrOZdevWkZCQwA8//EC1atWKA7Jhw4aubq9MKywspHHjxsyaNYuOHTu6uh0hhIdxq1C8lcmTJ7Njxw6mTp3q6lasYjab+f3334sDskqVKsUP6TRq1MjV7ZU5X331FT/88APLly93dStCCA9UZkJxw4YNjBgxgsTERFe3YjOz2cz69etJSEhgwYIFVKxYsXgF2bixledieaH8/HwaNmzIggULiIqKcnU7QggPVGZCMSsri6pVq5KRkeERO5dYLJZrArJ8+fLFARkeHu7q9tzShAkTWL16NYsXL3Z1K0IID1VmQhEgLCyMRYsWERER4epW7MpisbBhwwbmz5/P/PnzCQoKKg7IJk2cu5m6u8rOzqZBgwasWLGCZs2aubodIYSHKlPbgLRo0YIdO3a4ug27UxSFO++8kwkTJnDs2DGmTZtGRkYGXbt2JSIigrfeeovdu3dThn5+sbvPP/+czp07SyAKIRyqTK0Ux44dy8WLF/noo49c3YpTWCwWNm/eTEJCAvPnz8ff359+/frRv39/brvtNrd/CtdeMjIyaNCgAb///rvcexVCOJSsFN2Yoii0a9eO8ePHc/ToUWbNmkVeXh49evSgcePGjBkzhuTkZI9fQY4fP54HH3xQAlEI4XBlaqWYmppK8+bNOXv2rNeskm5EVVW2bNlSvILU6/XFK8gWLVq49T+b1KxUNp3YxOYTm1l/fD3peemYLCZ8db6EVQijY2hHIqtHElk9EoPWwLlz52jUqBFbt26VbfSEEA5XpkJRVVWqVKnC9u3b5TDgy1RVJSkpiYSEBBISEtBqtcUB2bJlS7cISItqYfmh5Xy0/iM2ndyEQWsguyAbC5brvtZX54tBa0CDhmGRw8j4NQMy4Msvv3RB50IIb1OmQhHgvvvu48UXX+TBBx90dStuR1VVtm3bVhyQQPFTrK1atXJJQCalJvHw/Ic5m3P2mq37SsKgNVBYUMjA2wYyufdk/PR+DupSCCEuKXOh+MorrxAUFMTrr7/u6lbcmqqqbN++nfnz55OQkIDZbC5eQUZGRjo8IAvNhYxZNYbPEz8v9RFhRp2R8sbyJPRPoF2tdnbqUAghrlfmQvH7779n4cKFxSsh8e9UVSU5Obl4BVlUVFQckG3atLF7QOYW5dJtdje2ntpKblGu3eb10/sxq+cs+jfpb7c5hRDiamUuFPfu3UvPnj05ePCgq1spk1RVZefOncUBmZ+fXxyQbdu2LXVAFpgK6PJtF5JOJZFvyrdT138z6ox83/d7ejXuZfe5hRCizIWiyWQiKCiI06dPExgY6Op2yjRVVdm9e3dxQObk5FwTkIpi/Rs7gxYNYu6euaW+ZHorfno/Nj+9maaVmzqshhDCO5W5UASIiori9Q9eJ7heMHmmPLQaLeV8ytG0clP8Df6ubq9MUlWVPXv2FAdkVlYWffv2pX///rRr165EAbny8Ep6ze1l10umN6JBQ6OKjdg5bCd6rd6htYQQ3qXMhGJeUR7xu+OZlTyLjX9tRFVU/H3+DkAVldyiXKoFVKND7Q482+ZZ2tdq7xavJJRFe/fuLQ7IixcvFgdk+/btbxiQ2YXZ1P2sLudyzzmlPz+9H6/e8SpvdnrTKfWEEN7B7UPxfO553l77NjO3z0Sj0ZTosX4NGvz0flT2r8wbHd9gYIuBKJoytXmPW9m3b19xQKanp18TkFqtFoBJmyfx2m+vOXyVeDV/vT9nXz4rr2oIIezGrUNx8f7FPLnoSXJNuRSaC22aw1/vT9PKTYnvF0+d4Dr2bdAL7d+/v/g1j7S0NPr06UO/fv0YsH0AJzJPOLUXf70/n3X9jKdaPeXUukIIz+WWoVhkLuLJRU+y6MAiu6w8tBotPjofvun1Df0i+tmhQwGQkpJCQkICM1fN5M/b/0Q1WPFH6b1/fG4C2gAPWNdDWIUwDjx/wLpBQghxE24XioXmQrp/350/jv1h9ycYjTojkx+YzJMtn7TrvN7u9d9e54M/Prjhtm0lUgCMAx4D6lg3VK/oSXs5jSDfINtqCyHEVdzqRpuqqkTPj2b9sfUOeaQ/z5THsz89y6L9i+w+tzdbe3St7YEIsA/wB0KtH2rUG9l2apvttYUQ4ipuFYozd8xkxeEV5Joc97BGnimPJxY+wens0w6r4W12nd1Vugl2AM0BGx4UzjflszV1a+nqCyHEZW4TiiczT/LiLy+SU5Tj8Fr5pnwGLBzg8ecQOoNFtZBZkGn7BBeBo0AL24YXmgs5lnHM9vpCCHEVtwnFZ3981iHbgt1IkaWIjcc38uPBH51Sz5MVmYvQarS2T5AM1AZCbJ/CkbvnCCG8i87VDcClg2eXH16OyWJyWs2cohzG/j6W7mHdnVbT3ZnNZjIyMkhPT+fChQv/+pGenk76hXTMT5ptuvQJXArFO0vXt1FnLN0EQghxmVuE4pStU1yy88z209s5eP4gDSs0dHptR7kSbDcLsVuFXHZ2NoGBgYSEhNzwo3z58tSvX5/y5ctf8+vN45uTXWTdWYkAHAOygCa2//0atAZqBdWyfQIhhLiKW4TijG0zrL90uplLD2icBZoCva2va7KY+G7nd7xz1zvWD3Ygi8Vi9Yrtyl9nZWVdE2z/DLArwXaj0AsKCireocYazao2Y8PxDdb/jSYD4YCP9UOvMOqMRFaPtH0CIYS4istD8WL+RdJy06wfGAh0BA4DRbbVNllMrD6y2rbB/+JKsNmyYsvKyiIgIOCWK7Z69erZNdhKo1NoJzad2IRFtfK1jB6lr51blEuraq1KP5EQQuAGobjt1Db89H5kFGRYNzDi8v+nYnMoAuw6c/PXCSwWC5mZmSUKsn9+TWZm5i0vRYaEhFC3bt0bruhcEWylcW+9e5mUOKlE+9LaW2hwKMG+wU6vK4TwTC4PxT1n91BgLnBZ/ez8bAYOG0heet51IZeZmYm/v/91q7SrP69Tp84NAy84OLhMBVtpdK7TmSCfIKeHYoA+gJfbv+zUmkIIz+byUMwuzKbIXIqlXikpGoWwpmE0qNTghpcidTqX/yNyexqNhlHtR/H6qtedekqGBQuP3faY0+oJITyfy7/jq5f/5yoGvYHHH3+c0GAb9hgTxQa3HMy76951Wij66f2IbRcrh0oLIezK5S/vBxgC0CuuOz3dZDHJN1Y7KOdTjtl9ZjvlbEMNGmoE1uCNjm84vJYQwru4PBQjKkXgo7PhmXwzlx6wUS9/FF3+NSsZtAYqGCtYP1Bcp2uDrvRu3NvhL9OrRSqDAwej17ruhykhhGdy+eXTVtVa2ba92zpg7VWf7wQ6AXdZN81tVW5zycYBnmr6Q9M5lH6I5NPJ5Jvtv22fUWfkv23+y+TnJpNxIIN3333Xax5oEkI4nlucp1h1XFXO5Jxxel2douOV9q/wXpd/nngrSiO7MJv7v7uf7ae323VfUj+dH9Mfmk7MbTGcO3eO/v374+/vz5w5cwgKkvMUhRCl5/LLpwCDWgzCR1uKbU1spFN0DGg+wOl1PV2AIYBVA1cxtPVQu1xK9dX5UtW/Kj8//jMxt8UAULFiRVasWEFoaCi33347Bw8eLHUdIYRwi1B8Luo5l9Q1nTQRNymOs2fPuqS+J/PR+TCh6wRWDVxFrXK18NNa/wCOQWvAV+fLgGYDOPTCITqGdrzm9/V6PV988QUvvfQSd955J8uXL7dX+0IIL+UWoVizXE3uqnMXOsV5tzj99f582vdTzpw5Q+PGjRkyZAj79u1zWn1vcXvN2/nzxT9pe7ItoZpQfHW+BBoC0dzkWA2D1kA5n3IEGAJ4rs1z7H12L1N7TL3lE8JDhw5l/vz5DBo0iPHjx8s5mUIIm7nFPUWAoxeP0mRyE6ccMqxTdLSv1Z41A9eg0WhIS0tjypQpTJ48mZYtWxIbG8vdd98tD+DYSVpaGmFhYRw6dIgcXQ4bj29k08lNrD+2ngv5FzCZTfjofGhYviEdQzsSWT2SdrXa4avztarOsWPH6NmzJ82aNeOrr77C19e68UII4TahCPDlli95eeXLDg/GAH0A+57fR81yNa/59fz8fObMmcP48ePR6/WMHDmS6OhoDAaDQ/vxdGPHjuXw4cPMmDHD4bVycnIYPHgwR44cYeHChVSvXt3hNYUQnsOtQlFVVbrN6ca6o+scdpq6n86PGT1nEN00+pZ9LF++nE8++YS9e/cyfPhwnnnmGUJCSnE8vJcymUzUrVuXJUuW0LJlS6fUVFWV999/n8mTJ7NgwQLatm3rlLpCiLLPLe4pXqHRaFgUvYjW1Vo75AVwP70fH9/78S0D8UofXbt2ZeXKlfz000/s37+f+vXrM3z4cA4fPmz3vjzZ4sWLCQ0NdVogwqV/f//5z3/48ssv6dGjB99++63Tagshyja3CkW49Pj9r0/8yn3177PblmGKRsGoMzL5wck8G/WsVWObN2/OrFmz2L17N4GBgdx+++307duX9evXywMdJfD5558zfPhwl9Tu0aMHa9as4Z133iE2NhaTyeSSPoQQZYdbXT69mqqqxO2OY9iyYeSb8imy2HaShr/enwblGzC331waVWxU6r5ycnKYNWsWn376KRUrViQ2NpbevXvLaRo3sGvXLrp27cqRI0fQ6123JVt6ejqPPPIIiqIQHx8vl8GFEDfltqF4xZnsM4z+bTTxu+NRNEqJH8IJMAQQaAjkPx3+w/9F/h9axb5bgZnNZpYsWcL48eM5ceIEL774Ik899RSBgYF2rVOWPfPMM9SoUYM333zT1a1gMpl4+eWXWbZsGUuWLCE8PNzVLQkh3JDbh+IVmQWZfJv8LbN2zGJv2l40Gg16RV987JQGDXmmPIJ8gri95u0MjxpOl3pdUDSOv0KcmJjIJ598wm+//cbgwYMZPnw4tWrVcnhdd3bhwgXq1avHvn37qFq1qqvbKTZr1ixeeeUVvv76a7p37+7qdoQQbqbMhOLVVFXlzwt/knI+hTxTHlqNlnI+5WhetTnljeVd1teRI0eYOHEi33zzDV27diU2NpZWrVq5rB9XGj9+PElJScyZM8fVrVxn48aN9OvXj+eff57XXntN3kcVQhQrk6Ho7jIyMpg2bRoTJ06kfv36jBw5kgcffBBFcbvnmhzCYrHQsGFD5syZw+233+7qdm7o5MmT9O7dm/r16zNjxgz8/Bx/DqQQwv15x3dpJwsKCmLUqFEcPnyYoUOH8t///peIiAi++uorcnOdczK9K/3888+EhIS49fuBNWrUYO3ateh0Ojp06MDx48dd3ZIQwg1IKDqQXq8nJiaGLVu28NVXX/HTTz9Rp04d3nzzTc6ccf5RWc4yadIkhg8f7vaXJY1GI99++y0xMTG0bduW9evXu7olIYSLSSg6gUajoVOnTixevJg//viDtLQ0wsPDefrpp9mzZ4+r27OrlJQUtm3bxiOPPOLqVkpEo9EwatQovv76a3r37s306dNd3ZIQwoUkFJ0sLCyML7/8kpSUFOrUqcM999xDt27d+PXXXz1iM4AvvviCp59+usxtxt21a1d+//13xo0bx/Dhwykqsu29WCFE2SYP2rhYfn4+33//PePHj0er1TJy5EhiYmLK5CbkWVlZhIaGkpycXGZfSbl48SKPPvoo+fn5JCQkUKFCBVe3JIRwIlkpupivry+DBw9m165dfPTRR8yZM4e6devy/vvvk56e7ur2rPLdd99x1113ldlABAgODmbp0qW0adOGNm3asGvXLle3JIRwIlkpuqGdO3fy6aefsnjxYh599FFGjBhBgwYNXNpTobmQszlnyTflo1f0lDeWJ9Dn7917VFWlSZMmTJ48mc6dO7uuUTuaM2cOI0aMYOrUqfTu3dvV7QghnEBC0Y2dOnWKzz//nKlTp9KhQwdGjhzJHXfc4ZSnOk0WEz+m/MgP+39g4/GNHLl4BL1Wj6JRUFWVQnMhFf0qElk9km4NulE9vTpjRo1h586dbv/UqTW2bt1K7969GTJkCGPGjPGad02F8FYSimVATk4O33zzDZ9++inly5cnNjaWPn36OGQT8ov5F5m4eSITN0+k0FxIVmHWv47x0/uRX5BPlF8UM5+aSeOKje3elyudOnWKvn37Ur16dWbNmkVAQICrWxJCOIiEYhliNptZunQp48eP59ixY8WbkJcrV84u8/908CcGLBxAblEu+aZ8q8drNVoMWgOj7xzN6A6j0Smec3JIQUEBzz77LFu3bmXx4sXUqVPH1S0JIRxAQrGMSkxMZPz48axcuZLBgwfzwgsv2PyAS4GpgMGLB7PowCJyi0q/446/3p/aQbX55fFfqB1Uu9TzuQtVVZk0aRJjx44lPj7eY+6dCiH+JjdIyqioqCji4+PZtm0bFouFFi1a8Oijj5KUlGTVPPmmfO797l4W7l9ol0AEyCnKIeWuKmHNAAAgAElEQVR8Cq2ntubg+YN2mdMdaDQaXnjhBWbPns0jjzzC5MmTPeLdUiHE32Sl6CEyMjKYPn06n332GXXr1iU2Npbu3bvf8sEQk8VEt9nd+OP4HzZdLv03GjRU9KvItme2UbNcTbvP70qHDx+mZ8+e3HHHHUyaNKlMvlcqhLiehKKHKSoqYsGCBXzyySdkZmby0ksv8cQTT9zwFIixv4/lvd/fs9sK8Ua0Gi2R1SPZ8NQGp5xt6UxZWVk8/vjjXLhwgfnz51O5cmVXtySEKCXP+i4l0Ov1REdHk5iYyLRp0/jll1+oU6cOb7zxBqdPny7+un1p+3h33bsODUQAs2pm99ndTNk6xaF1XCEwMJCFCxfSqVMnoqKi2L59u6tbEkKUkqwUvUBKSgoTJkwgPj6e3r1789JLLzHgjwEkn0lGxTn/+v30fvz5wp9UCajilHrOlpCQwLPPPsvnn39eZjZDF0JcT1aKXiAsLIzJkydz8OBB6tWrR+dHO7MzdafTAhHAolr4Kukrp9Vztv79+7Ny5UpeffVVxowZg8VicXVLQggbyErRCz0872Hm75vv1FAEqGCswOlRpz3q/cV/Onv2LP369SM4OJjZs2fb7R1SIYRzyErRy+QV5bEkZYn1gWgCFgOfAmOBLwEr37YoNBey6q9V1g0qYypXrsyvv/5K9erVadeuHYcOHXJ1S0IIK0goepmdZ3bio/OxfqAFKAc8CbwG3A0kABdKPkVeUR4bj2+0vnYZYzAYmDJlCsOHD+eOO+7g119/dXVLQogSklD0Mkmnkigy23CArgG4Cwjh0p+aRkAwcKrkU5hUE2uOrrG+dhk1bNgw5s2bx4ABA5gwYYK86C9EGSCh6GU2n9xMnimv9BNlA+eBStYN231md+lrlyGdOnVi48aNzJw5k8GDB1NQUODqloQQtyCh6GXO5Z4r/SRmYAHQAqtDMdfk2Pci3VGdOnXYsGED2dnZdO7cmVOnrFheCyGcSkLRy5T6VQEL8AOgBR6wYbjqna8q+Pv7M2/ePB544AGioqLYsmWLq1sSQtyAhKKX8Tf42z5YBZYAOcAjXApGKxm03rtHqEaj4Y033mDSpEk88MADzJ4929UtCSH+QULRyzSv0tz29wSXAWlADKC3bYo6wXVsG+hBevXqxerVq3nrrbd45ZVXMJvNrm5JCHGZhKKXaVOjDX766zcH/1cXgSTgNDAOeO/yx07rpulQu4P1tT1Q06ZNSUxMJCkpiR49enDx4kVXtySEQHa08TppOWnU/LQmheZCp9fWFGronN2Zl+55iS5dutzw5A5vU1RURGxsLMuXL2fJkiU0atTI1S0J4dVkpehlKvlXokmlJi6pbfA1cHftuxk/fjxVq1alR48eTJ06lZMnT7qkH3eg1+uZOHEir7zyCh06dOCnn35ydUtCeDVZKXqhubvnMmTpELIKs5xWU9EoPBzxMHH94gC4cOECv/zyC0uXLuWXX36hbt269OjRgx49etCyZctbHo7sqdavX0///v0ZMWIEL7/8MhqNxtUtCeF1JBS9UKG5kCrjqnAx33n3sfz0fqx9ci2R1SOv+z2TycT69etZunQpS5cuJTs7mwcffJAePXp43WXW48eP06tXL8LDw5k2bRpGo9HVLQnhVbzvx3GBQWvgiwe+wF9fitczrOCj9aF7WPcbBiKATqejU6dOjBs3jgMHDrB69WoaN27slZdZa9Wqxe+//47FYqFjx46cOHHC1S0J4VVkpeilVFWl25xurPprFUUWG/ZCtUKIbwiHXzhMiDHE6rG3uszaqlUrj73EqKoqH330ERMnTmT+/Pm0a9fO1S0J4RUkFL3YmewzNJnchPS8dIedrWjUGVn4yELub3B/qefyxsusP/74I4MGDeLDDz9k0KBBrm5HCI8noejl9qbtpf2M9mQWZNo9GI06I5MfnMyTLZ6067xXpKSksGzZMpYuXUpSUhKdOnWiR48ePPjgg9SoUcMhNV1h37599OzZkwceeIBx48ah03nuIc1CuJqEomD/uf10nNmRzIJMCsylP8VBgwZfnS9f9/ya6KbRdujw33n6ZdYLFy4QExOD2Wxm7ty5lC9f3tUtCeGRJBQFABfzL/Lsj8+y+MBicotsP8nCT+9HneA6JPRPIKJShB07LLkbXWbt3r073bt3L9OXWc1mM6+++iqLFi1i8eLFNGnimvdNhfBkEoriGj8f/JnhPw/ndPZpcotyS3xJNdAQiKJReO3O1xjVfpTt+6s6gKddZv3222+JjY1l+vTp9OzZ09XtCOFRJBTFdVRVZdOJTXyy8RN+OfQLFtWCXqsn35SP2WJG0Sj4aH1AAwWmAlpUbcGo9qPo1biX25+C4SmXWRMTE+nTpw/Dhg3j9ddfLzN9C+HuJBTFLamqyrGMYySdSuLoxaMUmAvQK3oq+lWkVbVWhFcKd6tVoTXK+mXW1NRUevfuTWhoKDNnzsTf3znvnQphC1VVsVjyUdVCNBoDiuLrlj/MSSgKcVlKSgpLly5l2bJl11xm7d69O9WrV3d1ezeUn5/PM888w86dO1m0aBGhoaGubkkIAFTVwoULq0hP/4WMjHXk5OzBYilAo9ECFjQaHX5+4QQFdaB8+fsoX77r5d9zLQlFIW6gLF1mVVWVCRMm8NFHHzF37lw6duzo6paEFzOZMjl1ahrHj3+C2ZyF2ZwLWG4xQoNWG4BG40PNmi9So8b/oddXcFa713cjoSjErZWVy6wrVqxgwIABvPPOOzzzzDOubkd4ofT05ezb9zhmcw4WS57V4zUaXxTFh8aNZ1CpUl8HdFiCHiQUhbCOO19mPXjwID179qRz58589tln6PV6l/YjvIPFUsCBA0+TlvYDFovtr3RdoSh+hIR0ITz8e3S6ADt0WHISikKUwj8vs9arV4/u3bu79DJrZmYmjz32GJmZmcyfP59KlSqVar4rD0hYLAUoigFFMbrV5WPhWmZzLsnJ95Kdvd2m1eHNaDQ++PmF0aLFOvT6YLvN+691JRSFsA93usxqNpt54403iIuLY9GiRTRv3rzEY1XVwsWLqzl//ucbPiABWvz8GhMUdOflByQeQCmjTyCL0rFYCklOvpesrEQslny7z6/RGPDzC6dVq/Votc55ulpCUQgHcYfLrPHx8QwfPpwpU6bQt++t79GYTFlXPSCRacUDEgZq1nyB6tWfxWCoaNf+hXs7fPg1Tp6cZJdLpjejKL5UrhxD48ZfO6zG1SQUhXACV15m3bZtG71792bgwIG8/fbbKMr1x6imp69k375HMZtzbfoGd+kBCQONGk2lUqWH5fKqF8jK2sb27Xfa9ZLpzSiKH7fdtpSQkLsdXktCUQgnKyoqYsOGDdddZu3Rowd33323Qy6znjlzhr59+1KpUiW+/fZbAgMDgUuXvw4ceIa0tHl2e0AiOLgzERFx6HTlSj2fcE+qamHz5kbk5x9yWk29vgrt2h1DURy7a5aEohAu5qzLrIWFhTz33HNs2rSJxYsXExpajZ077ycra6vdH5AwGuvRsuUf6PVymocnSk9fyZ49fTCbs51WU6sNJCxsKlWqOPbkHQlFIdyIoy+zqqrK5MmTGTv2HWbPro5Wu9+BD0iE0bLlRqc/Ui8cLzn5Xi5c+NXpdQMCWhAZud2hNSQUhXBTRUVFrF+/vviEj6svs3bp0gWj0Wjz3KtXD6CwcDY+PnZs+B80Gl8qV+5PePi3jisinK6w8CwbN9ZGVW07e/XECRg8GDp1gtdft26sohiJjNyBn1+YTbVLVMNhMwshSkWv19O5c2fGjRvHgQMHWL16NWFhYXzyySdUqVKFHj16MHXqVFJTU62aNzs7Ga12gUMDEUBV80lLW0B6+grHFhJOlZm5GUWx/Q/PZ59B48a2jtaSmbnR5tolIaEoRBkRFhZGbGwsq1ev5ujRozz66KOsWbOGpk2bEhkZydtvv01SUhK3uvijqip79kQ75JLpjVgsuezb9xhms3PqCcfLzEzEbM6xaeyqVeDvD61a2VbbYskmI2ODbYNLSEJRiDIoJCSEmJgYvv/+e86cOcO4cePIzs7m0UcfpWbNmjzzzDMsW7aMvLxrH6C5eHENhYUnoISHR9uDxZJPWlqC0+oJx8rMXA+YrR6XkwMzZ8Jzz5W2vqwUhRC3YM1l1uPHP7b5p3xbmc3ZHDv2oVNrCscpKkq3adzXX8MDD0Apdx3EZMoo3QT/Qh60EcKDXf006x9//MSMGZno9db/J5+ZCR9/DFu3QlAQPP003HNPyccrih+tWyfi79/E6trCdqqqUlRURF5eHnl5eeTn5xf/9Y0+L8nXREevoFIl617FOHQI3n0Xpk0DvR5mzYKTJ61/0AbAYKhB+/YnrB9YQrJhoRAe7Mpl1piYGM6eXcbevdGA9SvFzz4DnQ5++OHSN7jRo6F+fahbt6QzaMjI2OjVoaiqKgUFBSUKHlvC6mZjFEXBaDQWf/j6+pb48woVKlz3+yEhOwHrXtrfsQPOnIFHHrn0eV4eWCxw9ChMnWrdP0dHv7wvoSiEl8jN3Q4UWj0uLw/Wrbt0+ctohNtug/btYeVKGDq0ZHNYLDlkZKynevWnra7vCBaLhfz8fKeE05XP8/Pz0ev1JQ6nf/5auXLlrAq0K5/rdPb9Nr9v3xLOnLEuFLt3h7uv2qFt7lw4fRpeesn6+kZjQ+sHWUFCUQgvkZGxHiiyetyJE6DVQq1af/9a/fqQnGzdPFlZm2/462az2eagsXVMYWEhPj4+Nq2eLq2WQqwe4+Pjg1artfqfv7sJCrqTtLQFVm0L6Ot76eMKoxEMBgi28kQojUZPcHBn6wZZSUJRCC9RVHTOpnF5efDP7Vj9/SHXyq1ST506SHh4+HVhZTKZbL68FxAQQMWKFa1acV0JKNm03DaBga0vHyNmuyeftG2cohgJDIwsVe1/I6EohNew/jF6uPRT/T8DMDf3+qD8N8HB5ViwYMF1YWUwGCSgypCAgBZoND5AltNrq6qZoKA7HVpDXskQwksoim3bwtWsCWbzpcuoVxw6BHXqWDePwRBAREQEdevWpWrVqgQFBcmKrQzSaLTUrPkiGo3vv3+xXevqqVZtMFqt7dsbloSEohBews8vwqZxRiN06HDpxeu8PNi1CzZsgHvvtXae+jbVF+6nevWhOPtnGY1GS40aLzi8joSiEF4iKOgOFMXfprEjRkBBAfTpc+l9sxEjrHkdA0BHcHAnm2oL92MwVKZmzZdQFPuf/XkjiuJL5cqP4efXwOG15OV9IbxEdvZOtm+/w6ln4F2h0QTQtOlcKlR4wOm1hWNYLIX8/nt9zOYTKA5eXun1VWjb9pBTjiGTlaIQXsLfv6nNK8XSysvLpk+f/zJx4kROnz7tkh6EfX377feMGpUNOPa4FUUx0qTJXKedyymhKISX0GiUy5e8HPugwvV0hIYOYfTo/5KUlER4eDhdunRh+vTppKfbto+mcJ2CggL+7//+j/fff59Zs/6gefNFDvszpShGGjWa4dRL73L5VAgvUlR0no0bazrt6Ci49I2tdett+PtfOkQvPz+fn376ifj4eFasWEGHDh2Ijo6mZ8+eBAQ4ZzUgbHPixAn69etHtWrVmDVrFkFBQQCkp69g9+4+WCx5gMUOlTQoipHGjWdRuXJ/O8xXcrJSFMKL6PUVqFXrVac9IKHR+FKp0sPFgQjg6+tLnz59mDdvHsePHyc6Opq4uDhq1KjBww8/zMKFC8nPl/MX3c2aNWuIioqiZ8+eLFiwoDgQAcqXv4/IyB0EBLQo9SV6RfHDaAyjVatNTg9EkJWiEF7HYiliy5bbyMtLwdHnKur1lS4/IFHuX782PT2dBQsWEB8fz/bt23nooYeIjo6mS5cu6PV6h/Ypbk5VVcaPH8/HH3/Md999x723eBdHVS2cODGRI0feAixWPdSlKAGASq1arxAaOhpFcc2/cwlFIbxQdvYutm273ar9K62lKEZuu20ZISF3//sX/8OpU6dISEggLi6Ow4cP07dvX6Kjo+nQoQOKox91FMWys7N56qmnOHz4MAsWLCA0NLRE4yyWQtLSfuD48Y/IydmFovhhsRShqn8feq3R+KAoPlgseRiNDahV6xUqV37E4S/n/xsJRSG8VHr6r+ze3dMhwagoRsLCplC16hOlnuuvv/5i7ty5xMfHc+7cOR5++GFiYmKIjIyU3XAc6MCBA/Tp04fbb7+dL774Al9f23awMZtzyc5OJisriYKC45jNuWi1fhgM1QgMjCQgoIXTniwtCQlFIbzYhQur2LXrocsP3ti2N+q1NCiKL40afU2VKtF2mO9a+/btIz4+nri4OCwWC9HR0URHR9O0aVO71/JmixYtYujQobz77rsMGTLEq374kFAUwsvl5f3J3r3R5OTsxWKx/gDiKwoKFIKD69OkyXwCAprZscPrqarK9u3biYuLY+7cuQQFBRUHZP36sp2crcxmM2+88QazZ89m/vz5REVFubolp5NQFEKgqhZOnvyCv/56EzBjNpf8BIQrD0isXBlMvXpvMWjQEIf1eSMWi4WNGzcSFxdHQkICoaGhxMTE8PDDD1OjRg2n9lKWnTt3jkcffRSTyUR8fDyVK1d2dUsuIaEohChmsRRy7twijh37kJycnSiKH7m5mfhctWnJ1Q9I+PrWp3btl6lcOZpt2/bQs2dP9u/fT7ly//60qSOYTCZWr15NXFwcixYtolmzZkRHR9OvXz8qVqzokp7KgqSkJPr27csjjzzCe++9h07nvacKSigKIW7IbM4jLW0jL7zQlfffH4nFkoei+F5+QKL15QckAq8ZM2jQICpXrsyHH37ooq7/VlBQwPLly4mLi+Pnn3+mXbt2xMTE0KtXL5eFtjv6+uuvefXVV5kyZQp9+/Z1dTsuJ6EohLipnTt3EhMTw549e0r09adOneK2225j48aNNGzY0MHdlVxOTg5Lly4lLi6ONWvWcM899xAdHU337t0xGl37CsCtmEzZZGdvJysricLCk5jN+Wi1vvj41CQgoHWpntwsKCjghRdeYO3atSxcuJDw8HA7d182SSgKIW5q8eLFTJs2jWXLlpV4zIcffsiGDRtYvHixAzuz3YULF1i0aBFxcXEkJibSvXt3YmJiuPfeezEYDK5u7/IKfR7Hjn1EXl7K5Xf8ClDVguKvURRfNBoDFksufn6NqVXrFSpV6o9WW7LXJo4fP06/fv2oWbMmM2fOlJXzVeQtWCHETf3111/Ute7gREaMGMGePXtYsWKFg7oqnZCQEAYNGsSKFSs4cOAA7dq144MPPqB69eoMHTqUVatWYTbb4/UU61gsJo4eHcuGDZU5ePB5cnP3oqomzObMawLx0tfmX/51Ezk5uzl48Fk2bKjMsWMfoqq37n3VqlVERUXRp08f5s+fL4H4D7JSFELc1IsvvkhoaCgjR460atySJUsYPXo0O3bsKDNbtB07dox58+YRFxdHampq8SYBbdu2dfh7ejk5e9iz52Hy84+W6rUYRfHHaKxHRMS8a/abhUuvsYwbN45PPvmEOXPm0KVLl9K27ZFkpSiEuClbVooAPXr0oEaNGkyZMsUBXTlG7dq1GTVqFElJSaxdu5YKFSowaNAg6tWrx+jRo0lOTsYRa4i0tEUkJUWRm7uvVIEIYLHkkJOzh6Sk1pw79/cl76ysLB5++GHmzZtHYmKiBOItyEpRCHFTt912G9999x0tWrSweuyePXu466672Lt3b5l9HUJVVXbu3El8fDzx8fH4+voSExNDdHQ0YWFhpZ7/7Nn57N//xOUjl+xLUYxERMRz7lwYffr04Y477mDSpEk2b9fmLSQUhRA3pKoqgYGBnDx58ppjgqzxwgsvYDKZmDx5sp27cz5VVdm8eTNxcXHMmzeP6tWrF28SULt2bavny8jYQHLyPQ4JxCtU1cB//mPkqafG8fTTTzusjieRUBRC3FBaWhqNGzfm/PnzNs+Rnp5OeHg4K1eupFkzx2795kxms5m1a9cSHx/PDz/8QOPGjYmJiaFfv35UqVKlBONz2by5IYWFqQ7vVaOpwp13Hinxk6neTu4pCiFuyNb7iVcrX748b731FiNGjHDI/ThX0Wq13H333UydOpXU1FRGjx7Nxo0badSoEffddx9ff/01Fy9evOn4w4dHYTJdcEqvGk0mf/452im1PIGEohDihuwRigBDhw4lLS2NhQsX2qEr92MwGHjwwQeZPXs2qampDBkyhB9//JHQ0FB69uxJfHw8OTl/P0CTn3+U06dnOvSy6dUsljxOnZpCQcFJp9Qr6yQUhRA3ZK9Q1Ol0TJgwgdjYWPLz8+3Qmfvy8/Ojf//+LFiwgGPHjtG3b1+++eYbatSoQUxMDIsXL+bo0c9QVYtT+1JVlZMnv3RqzbJKQlEIcUP2CkWALl260LJlS8aPH2+X+cqCoKAgnnjiCX7++WcOHTpEp06dmDjxEw4f/hRVLXRqL6paQGrqF1gsRU6tWxZJKAohbsieoQgUvzh+8qT3XcarWLEiw4YNY8GC/xEQEPjvA25i1SoYOBC6dYPHHoOdO0s+VlUtZGVttbm2t5BQFELc0J9//mnXUKxXrx7PPPMMo0d770MfWVlJNq8St26FqVPh1Vfhxx9hwgSoVq3k4y2WIrKykmyq7U0kFIUQ1zGbzRw/fpzQ0FC7zjt69Gh+++03Nm3aZNd5y4qLF9det49pSc2aBQMGQEQEKApUqnTpo6RUNY+MjHU21fYmEopCiOucPHmSihUr2n33k8DAQN5//31efPFFLBbnPmziDvLyUmwaZzbDgQOQkXHpsmn//vDZZ1BgZb7m5u63qb43kVAUQlzH3vcTr/b4448DMHv2bIfM784sFtuevr1wAUwmWLsWJk6E6dPh4EH47jtr69u2SvUmEopCiOs4MhQVRWHixImMHj2arKwsh9RwXzqbRvn4XPr/3r2hQgUICrq0Wty82bp5NBqtTfW9iYSiEOI6jgxFgLZt23LPPfcwduxYh9VwRzpdsE3jAgMv3T+8+gQrW06z0ulCbKrvTSQUhRDXcXQoArz//vtMmzaNw4cPO7SOOzCZTCQnJ3P8eDlsvZXatSssXHjpUmpWFsyfD+3aWTODQlDQHbYV9yISikKI6zgjFKtXr05sbCyjRo1yaB1nU1WVv/76i7lz5xIbG0uHDh0IDg4mOjqa5OQiVNXHpnmfeAIaNbr0BOrAgdCgAVy+PVsiWm0A5cq1tam2N5FTMoQQ16lZsybr16+3+ysZ/5Sfn09ERARTp07lnnvucWgtR0lLS2PLli0kJiaSmJjIli1bMBgMREVFFX9ERkYSFBREXt4RtmwJt/mBm9LQaHxp2/Ygvr41nV67LLHtrq8QosxTVZX8/L/IykoiMzORwsITWCyFgIH77juFn99OCgt9MRj+/SgkW/n6+vLJJ58wYsQIduzYgU7n3t+ScnNz2bZtW3EAJiYmcv78edq0aUNUVBRDhw5l2rRp1KhR44bjjcY6+Ps3Iysr0cmdQ7lybSQQS0BWikJ4mYKC06SmTuHkyc+xWPLQaHSYzdnA3ze7TCbw8SmHxVKAj08NatV6hSpVHkOnC7B7P6qqcs8999CnTx+ee+45u89vK5PJxN69e68JwJSUFJo2bXrNKjAsLAxFKfmdqLS0hezfPxCz2XlP3mq1gURExFGhwoNOq1lWSSgK4SVMpkwOHhzO2bNz0Wg0Vl3CUxR/QKV27dHUrv0aimLfFd2uXbvo0qUL+/bto0KFCnaduyRUVeXIkSPXBOD27dupVasWUVFRxSvB5s2b4+Nj2z3BKywWE5s21aGw0Hl7wPr4hHL77YfllYwSkFAUwgukp69g377HMJuzS3U/S1H88fUNpUmTBPz9I+zYITz33HMoisKkSZPsOu+NnDt37pr7gImJiej1etq2bVu8AmzdujXBwba9QvFvMjLWk5x8r1POVFQUIy1arKFcuSiH1/IEEopCeLijR8dy9Oh7WCy5dppRg6IYadJkPhUqdLPTnHD+/HnCw8NZtWoVTZs2tdu8V98HvBKE586dIzIy8prLoDe7D+goKSnPOfywYUUxUr36MBo08J4ju0pLQlEID3bkyDscO/ahHQPxb38H4wN2m3PSpEksXryYlStXorHh7XRH3Qd0BLM5nx07OpCdvcvmTcJvRaPxJTCwFS1arEJRSnfJ15tIKArhoU6fnkNKylCHBOIViuJHq1YbCQhoZpf5ioqKaNGiBWPHjqVnz563/FpVVTl69Oh19wFr1KhxTQDa4z6go5hMmezYcRe5uXvt+pqGovji79+M5s1/c8jDUZ5MQlEID1RQkEpiYqPLT5U6kgajsSFt2uxGUfR2mXHlypUMGzaMvXv3XhNm/7wPuGXLFnQ6XfF9wDZt2hAZGemw+4COYjbnsm/fQNLTf7LLDzCK4kfFig/RqNFMtFr7nnLiDSQUhfAwqqqSnHwPFy+uA0wOr6coftSsOZJ69f5ntzm7d+9OrVq1CAsLKw5Bd7gP6Ejnzi1h//4nsVjybbrPqChGFMVIePh3dr2k7W0kFIXwMBcv/sHOnV2xWHKcVlNRfGnXLhW93voNp81m83X3AQ8cOEBhYSGPP/44d911F1FRUTRq1Mjl9wEdrajoIqmpUzlxYjwWS+7llf6tvkVr0Gr90WoDqFkzlurVh6DTBTmrXY8koSiEh9m1qyfnzy/l1t9M7UtR/Khb93/UqjXyll9nzX3At956i9OnTzNr1izn/E24EVW1cOHCStLTl3Px4u/k5u7BYilEo1FQVQuK4oO/fxOCgjpSvvz9hIR0QaPx7B8YnEVCUQgPUlh4lo0bQ1FV5++taTBUp127E9c8NXr+/Pnr3gfUarXXvA94s/uAWVlZNGrUiEWLFhEV5d3v2KmqiqoWYrEUoCg+aDQGm57OFf9OQlEID3LmzBxSUobZ9IDNiPkvwb0AAAldSURBVBGwdy9oL296UqkSfPttyccrih9a7dds2XKqOADT0tKuuQ/Ypk0batSoUeJv6LNmzWLKlCls2LDB4y+dCvcgoSiEB0lJeZ7U1MnYcul0xAi491540MbtMXNz4Ycf6uHj07U4BEt7H9BisdC2bVtefPFFHrfmnCQhbOTeW9ILIaySkfEHzryXeDU/Pw2vvtqdhg0/s9uciqIwceJE+vfvT69evQgIkHfuhGPJ9QghPEhBwYlSjZ82DXr2hOefhx07rB2tkpu7r1T1b6Rdu3Z07tyZDz74wO5zC/FPcvlUCA/y++9BmM2ZNo3duxfq1AGdDlatgokTL4WkNa8CBgV1oGXLdTbVv5UTJ07QvHlztm7dSt26de0+vxBXyEpRCA9SmsfyIyLAzw8MBujaFZo2hc2bra1vn11t/qlmzZq89NJLvPzyyw6ZX4grJBSF8CA6nf22ONNowNrrSAZDFbvV/6fY2Fi2bt3K6tWrHVZDCAlFITxIQECkTeOysyExEQoLwWyGlSth506w5vVARTESFHSnTfVLwmg0Mm7cOEaMGIHJ5Pjt64R3klAUwoMEB3dEUazfBNpkgq+/hl69Lj1os3Ah/O9/UKtWyefQaPQEBra2urY1+vbtS0hICNOnT3doHeG95EEbITxIVtYOtm+/06n7nl6hKEbuuOM8Wq3RoXWSk5O577772L9/PyEh1u+1KsStyEpRCA8SGNgCH5+aLqispXLlGIcHIkDz5s3p06cPb7/9tsNrCe8jK0UhPMypUzM5ePAFLBZHn6X4N0Ux0qpVIgEBTZ1SLy0tjYiICNauXUtERIRTagrvICtFITxM5crRTlmxXaHR6AgMjHJaIAJUqlSJMWPGMGLECOTnemFPEopCeBit1kh4+BwUxc8p9TQaH8LDrdg53E6effZZjh8/zrJly5xeW3guCUUhPFD58vdSqVI/m55EtYai+NOgwXh8fWs7tM6N6PV6JkyYwMiRIykoKHB6feGZJBSF8FBhYV/i59cYjcbHIfMrih+VKvWjWrUhDpm/JO6//34aN27MxIkTXdaD8CzyoI0QHsxkymD79k7k5h6w68HDiuJHxYq9CQ//Bo1Ga7d5bZGSkkL79u3ZvXs3VatWdWkvouyTUBTCw5nNOezf/xTnzy/FYskt5WwaFMWXWrVepU6dN93m9PeXX36Z9PR0ZsyY4epWRBknoSiElzh//if27RuAxZJvUzhqtQEYDDVo0mQeAQHNHNCh7TIyMmjcuDFLly4lMvL6re5UVSU//ygm0wVU1YxWa8TXty5arXMeRhJlh4SiEF7EZMri9OlvOH78Y0ymdMzmfODm+4hqNP/f3v2FSFUFcBz/nXN3x9nZGV1t0xZ1NfFPrcUKxfZQlEQgUdFmFIXUc2QFRaQIUfgSPQQKZVjqU1AQglQgiv2R7C/9k1YQDRGz1nXF2WHGXXd27j097O0hyHJmd+7s2f1+3s/53af97Z17/sySMVaZTJc6Ozepvb1X1tbnJoyJ2r17t/bs2aMjR47IGKPh4d/U3/+u8vlD8T2PRsb8fa+6UxSNKJXqUC53mxYs2KBrrrlf1nLv+kxHKQIzkHNOhcIRDQ19oaGhwyqVjioMC3IulDHNam5uVy53q9ra7tK8eevU2jr1N8iHYaienh5t2bJO119/WKXST3IulHNj/zs2CHIyplkLFz6nxYtfUFNTLoEnxlREKQKYFsbG8vr66/UaGTmsdLq2P2vWphUEs9XV9b7mzr17kp8QPqAUAXhvaOhL9fU9qDAclnMT37NobYsWLHhSK1e+1fDVtUgWpQjAaxcvHlRf30OTsLL2n6zNaO7ce7R69V6+Nc4gbN4H4K1C4Zu6FKIkRdGw8vlDOn78Cc5XnUEoRQBeqlSK6ut7sC6F+LcoGtaFCx9rYOC9umVgaqEUAXjp5MlnVakU654TRZd08uTTGh3tr3sWGo9SBOCdQuFbDQ5+OKlH1/2XMBzViRNPJZKFxqIUAXjnzJnXFEUjCSaOKZ8/qNHRPxPMRCNQigC8Ui4P6OLFg5KSXfzinNMff7ydaCaSRykC8Mr58x/UdBD5uXPS5s3SAw9I69dL27dLYXj1450bVX//O1Xnwi+UIgCv5POf1vTT6bZtUlubtHevtGuXdPSotG9fdXNUKkMqlwerzoY/KEUAXikWf6hpXH+/tHatlEpJ8+ZJPT3S6dPVzWFti4rFH2vKhx8oRQDeCMPLKpfP1zT24Yelzz6TLl+WBgel774bL8ZqRNGwLl36taZ8+IGziwB4IwxLMqZJzlXxMTDW3S198ol0331SFEnr1kl33FHdHM6NqVIpVJ0Nf/CmCMAjrqZFNlEkbdok3XmntH//+LfEYlHaubOWZ6i+kOEPShGAN6xtkXNXvhT5SopFaWBA6u0d/6Y4Z450773jP6FWJ1AQcNfidEYpAvBGU1O2plKaM0fq6JA++mh8G0apJB04IC1bVt08QdCqTOaGqvPhD0oRgFey2e6axm3dKn3//fjb4oYNUhBIGzdWN4dzFeVyt9SUDz+w0AaAV9ra1qpQ+ErOjVU1bvny8b2KE2GM1axZnRObBFMab4oAvDJ//mMyphH/zwe69tpHa1roA39QigC8ksmsUmvrzYnnWpvSokXPJ56LZFGKALzT2blZ1rYmmGiUyXQpm70pwUw0AqUIwDvt7b3KZrsT+xnV2rRWrdqVSBYai1IE4B1jjLq63pcxs+qeZW1Gixa9oFxuTd2z0HiUIgAvpdOdWrlyh6zN1C3DmJRaWlZo6dJX6paBqYVSBOCt6657UkuXvlqXYjQmpXR6idas+VzWNk/6/JiajHMu2eurAWCSnT27Q6dOvVjTPYv/xtqMMpkb1d19SM3NbZMyJ/xAKQKYForFX3Ts2CMql/9UFA3XOIuRtWktWfKyOjtfkjHBpD4jpj5KEcC0EUVlnTnzun7//Q1JocKwdFXjjEnJGKvZs2/XihVvqrWV801nKkoRwLQTRWO6cGGfzp7dplLpZ0kmvoexIslJsjImUBQNK5Xq0Pz5j2vhwmeUTi9u8JOj0ShFANOac5FGRk6pVPpFlcqQnKsoCFrU0rJC2Wy3giDJQwAw1VGKAADE2JIBAECMUgQAIEYpAgAQoxQBAIhRigAAxChFAABilCIAADFKEQCAGKUIAECMUgQAIEYpAgAQoxQBAIhRigAAxP4CFbmhaac9TskAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -176,14 +176,14 @@ "outputs": [], "source": [ "# 自定义GCN层函数\n", - "def gcn_layer(gw, feature, hidden_size, name, activation):\n", + "def gcn_layer(gw, nfeat, efeat, hidden_size, name, activation):\n", " # gw是一个GraphWrapper;feature是节点的特征向量。\n", " \n", " # 定义message函数,\n", " def send_func(src_feat, dst_feat, edge_feat): \n", " # 注意: 这里三个参数是固定的,虽然我们只用到了第一个参数。\n", " # 在本教程中,我们直接返回源节点的特征向量作为message。用户也可以自定义message函数的内容。\n", - " return src_feat['h']\n", + " return src_feat['h'] * edge_feat['e']\n", "\n", " # 定义reduce函数,参数feat其实是从message函数那里获得的。\n", " def recv_func(feat):\n", @@ -192,7 +192,7 @@ " return fluid.layers.sequence_pool(feat, pool_type='sum')\n", "\n", " # send函数触发message函数,发送消息,并将返回消息。\n", - " msg = gw.send(send_func, nfeat_list=[('h', feature)])\n", + " msg = gw.send(send_func, nfeat_list=[('h', nfeat)], efeat_list=[('e', efeat)])\n", " # recv函数接收消息,并触发reduce函数,对消息进行处理。\n", " output = gw.recv(msg, recv_func) \n", " # 以activation为激活函数的全连接输出层。\n", @@ -211,21 +211,14 @@ "cell_type": "code", "execution_count": 7, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/huangzhengjie/Workspace/baidu/nlp-gnn/pgl/pgl/utils/paddle_helper.py:48: UserWarning: Your paddle version is less than 1.5 gather may be slower.\n", - " warnings.warn(\"Your paddle version is less than 1.5\"\n" - ] - } - ], + "outputs": [], "source": [ "# 第一层GCN将特征向量从16维映射到8维,激活函数使用relu。\n", - "output = gcn_layer(gw, gw.node_feat['feature'], hidden_size=8, name='gcn_layer_1', activation='relu')\n", + "output = gcn_layer(gw, gw.node_feat['feature'], gw.edge_feat['edge_feature'], \n", + " hidden_size=8, name='gcn_layer_1', activation='relu')\n", "# 第二层GCN将特征向量从8维映射导2维,对应我们的二分类。不使用激活函数。\n", - "output = gcn_layer(gw, output, hidden_size=1, name='gcn_layer_2', activation=None)" + "output = gcn_layer(gw, output, gw.edge_feat['edge_feature'], \n", + " hidden_size=1, name='gcn_layer_2', activation=None)" ] }, { @@ -268,36 +261,36 @@ "name": "stdout", "output_type": "stream", "text": [ - "Epoch 0 | Loss: 0.712927\n", - "Epoch 1 | Loss: 0.665513\n", - "Epoch 2 | Loss: 0.625431\n", - "Epoch 3 | Loss: 0.591621\n", - "Epoch 4 | Loss: 0.563292\n", - "Epoch 5 | Loss: 0.539553\n", - "Epoch 6 | Loss: 0.519604\n", - "Epoch 7 | Loss: 0.502797\n", - "Epoch 8 | Loss: 0.488625\n", - "Epoch 9 | Loss: 0.476778\n", - "Epoch 10 | Loss: 0.466839\n", - "Epoch 11 | Loss: 0.458521\n", - "Epoch 12 | Loss: 0.451596\n", - "Epoch 13 | Loss: 0.445855\n", - "Epoch 14 | Loss: 0.441109\n", - "Epoch 15 | Loss: 0.437194\n", - "Epoch 16 | Loss: 0.434423\n", - "Epoch 17 | Loss: 0.432126\n", - "Epoch 18 | Loss: 0.430175\n", - "Epoch 19 | Loss: 0.428500\n", - "Epoch 20 | Loss: 0.427060\n", - "Epoch 21 | Loss: 0.425821\n", - "Epoch 22 | Loss: 0.424751\n", - "Epoch 23 | Loss: 0.423827\n", - "Epoch 24 | Loss: 0.423026\n", - "Epoch 25 | Loss: 0.422332\n", - "Epoch 26 | Loss: 0.421729\n", - "Epoch 27 | Loss: 0.421204\n", - "Epoch 28 | Loss: 0.420746\n", - "Epoch 29 | Loss: 0.420345\n" + "Epoch 0 | Loss: 0.629119\n", + "Epoch 1 | Loss: 0.614591\n", + "Epoch 2 | Loss: 0.602767\n", + "Epoch 3 | Loss: 0.593824\n", + "Epoch 4 | Loss: 0.587454\n", + "Epoch 5 | Loss: 0.581866\n", + "Epoch 6 | Loss: 0.576963\n", + "Epoch 7 | Loss: 0.572337\n", + "Epoch 8 | Loss: 0.567905\n", + "Epoch 9 | Loss: 0.563806\n", + "Epoch 10 | Loss: 0.559831\n", + "Epoch 11 | Loss: 0.555969\n", + "Epoch 12 | Loss: 0.552211\n", + "Epoch 13 | Loss: 0.548553\n", + "Epoch 14 | Loss: 0.544992\n", + "Epoch 15 | Loss: 0.541524\n", + "Epoch 16 | Loss: 0.538145\n", + "Epoch 17 | Loss: 0.534852\n", + "Epoch 18 | Loss: 0.531641\n", + "Epoch 19 | Loss: 0.528505\n", + "Epoch 20 | Loss: 0.525442\n", + "Epoch 21 | Loss: 0.522446\n", + "Epoch 22 | Loss: 0.519513\n", + "Epoch 23 | Loss: 0.516638\n", + "Epoch 24 | Loss: 0.513819\n", + "Epoch 25 | Loss: 0.511053\n", + "Epoch 26 | Loss: 0.508336\n", + "Epoch 27 | Loss: 0.505668\n", + "Epoch 28 | Loss: 0.503046\n", + "Epoch 29 | Loss: 0.500472\n" ] } ], @@ -349,9 +342,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.5" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } -- GitLab