diff --git a/README.md b/README.md index fcb09c22c60defef53cc75451d977194d08b97da..3a58bf618ebcde862336f281b21ca5078dfb7ef0 100644 --- a/README.md +++ b/README.md @@ -63,8 +63,7 @@ If we use complex user-defined aggregation like [GraphSAGE-LSTM](https://cs.stan PGL requires: -* paddle >= 1.5 -* networkx +* paddle >= 1.6 * cython @@ -73,7 +72,7 @@ PGL supports both Python 2 & 3 ## Installation -The current version of PGL is 0.1.0.beta. You can simply install it via pip. +The current version of PGL is 1.0.0. You can simply install it via pip. ```sh pip install pgl diff --git a/README.zh.md b/README.zh.md index aa6c92c195f0efac8092bf0cec75e69d15ab62e4..5af657c1e05f7ce5f52cfffe5edf1355cf96c163 100644 --- a/README.zh.md +++ b/README.zh.md @@ -58,8 +58,7 @@ Paddle Graph Learning (PGL)是一个基于[PaddlePaddle](https://github.com/Padd PGL依赖于: -* paddle >= 1.5 -* networkx +* paddle >= 1.6 * cython @@ -68,7 +67,7 @@ PGL支持Python 2和3。 ## 安装 -当前,PGL的版本是0.1.0.beta。你可以简单的用pip进行安装。 +当前,PGL的版本是1.0.0。你可以简单的用pip进行安装。 ```sh pip install pgl @@ -81,4 +80,3 @@ PGL由百度的NLP以及Paddle团队共同开发以及维护。 ## License PGL uses Apache License 2.0. - diff --git a/docs/requirements.txt b/docs/requirements.txt index 4e7960b2517dee1e49324ec1245b1a49595126bc..8178df62d1c796588ce38714f1978efeea0b9875 100644 --- a/docs/requirements.txt +++ b/docs/requirements.txt @@ -3,5 +3,6 @@ mistune sphinx_rtd_theme numpy >= 1.16.4 cython >= 0.25.2 +networkx paddlepaddle pgl diff --git a/docs/source/conf.py b/docs/source/conf.py index bfa66052064eaa1170023cb8a25278829deaff2f..ca7cb8eab16bc3817bcf23df78cfa2c9b68382f0 100644 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -40,7 +40,7 @@ copyright = '2019, PaddlePaddle' author = 'PaddlePaddle' # The full version, including alpha/beta/rc tags -release = '0.1.0.beta' +release = '1.0.0' # -- General configuration --------------------------------------------------- diff --git a/examples/dgi/README.md b/examples/dgi/README.md index 3de5252e1ceb5482013cc8de224cc4080a5fab58..34481e06d4576c7969fe68c7a7b6a5f5e319d0c9 100644 --- a/examples/dgi/README.md +++ b/examples/dgi/README.md @@ -1,4 +1,4 @@ -# PGL Examples for GCN +# PGL Examples for DGI [Deep Graph Infomax \(DGI\)](https://arxiv.org/abs/1809.10341) is a general approach for learning node representations within graph-structured data in an unsupervised manner. DGI relies on maximizing mutual information between patch representations and corresponding high-level summaries of graphs---both derived using established graph convolutional network architectures.