From a195f887b6c660001a641afc280292da1fab6ee5 Mon Sep 17 00:00:00 2001 From: sys1874 <578417645@qq.com> Date: Fri, 25 Sep 2020 19:48:10 +0800 Subject: [PATCH] Update README.MD --- ogb_examples/nodeproppred/unimp/README.MD | 11 +++++++++++ 1 file changed, 11 insertions(+) diff --git a/ogb_examples/nodeproppred/unimp/README.MD b/ogb_examples/nodeproppred/unimp/README.MD index d63f65e..34f61b1 100644 --- a/ogb_examples/nodeproppred/unimp/README.MD +++ b/ogb_examples/nodeproppred/unimp/README.MD @@ -2,6 +2,15 @@ This experiment is based on stanford OGB (1.2.1) benchmark. The description of 《Masked Label Prediction: Unified Massage Passing Model for Semi-Supervised Classification》 is [avaiable here](https://arxiv.org/pdf/2009.03509.pdf). The steps are: +### Note! +We propose **UniMP_large**, where we extend our base model's width by increasing ```head_num```, and make it deeper by incorporating [APPNP](https://www.in.tum.de/daml/ppnp/) . Moreover, we firstly propose a new **Attention based APPNP** to further improve our model's performance. + +To_do list: +- [x] UniMP_large in Arxiv +- [ ] UniMP_large in Products +- [ ] UniMP_large in Proteins +- [ ] UniMP_xxlarge + ### Install environment: ``` git clone https://github.com/PaddlePaddle/PGL.git @@ -13,6 +22,7 @@ This experiment is based on stanford OGB (1.2.1) benchmark. The description of ### Arxiv dataset: 1. ```python main_arxiv.py --place 0 --log_file arxiv_baseline.txt``` to get the baseline result of arxiv dataset. 2. ```python main_arxiv.py --place 0 --use_label_e --log_file arxiv_unimp.txt``` to get the UniMP result of arxiv dataset. + 3. ```python main_arxiv_large.py --place 0 --use_label_e --log_file arxiv_unimp_large.txt``` to get the UniMP_large result of arxiv dataset. ### Products dataset: 1. ```python main_product.py --place 0 --log_file product_unimp.txt --use_label_e``` to get the UniMP result of Products dataset. @@ -41,6 +51,7 @@ Arxiv_dataset(Full Batch): Products_dataset(NeighborSampler): | ------------------ |-------------- | --------------- | -------------- |----------| | Arxiv_baseline | 0.7225 ± 0.0015 | 0.7367 ± 0.0012 | 468,369 | Tesla V100 (32GB) | | Arxiv_UniMP | 0.7311 ± 0.0021 | 0.7450 ± 0.0005 | 473,489 | Tesla V100 (32GB) | +| Arxiv_UniMP_large | 0.7379 ± 0.0014 | 0.7475 ± 0.0008 | 1,162,515 | Tesla V100 (32GB) | | Products_baseline | 0.8023 ± 0.0026 | 0.9286 ± 0.0017 | 1,470,905 | Tesla V100 (32GB) | | Products_UniMP | 0.8256 ± 0.0031 | 0.9308 ± 0.0017 | 1,475,605 | Tesla V100 (32GB) | | Proteins_baseline | 0.8611 ± 0.0017 | 0.9128 ± 0.0007 | 1,879,664 | Tesla V100 (32GB) | -- GitLab