Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PGL
提交
3eb6d2a6
P
PGL
项目概览
PaddlePaddle
/
PGL
通知
76
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
11
列表
看板
标记
里程碑
合并请求
1
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PGL
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
11
Issue
11
列表
看板
标记
里程碑
合并请求
1
合并请求
1
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3eb6d2a6
编写于
7月 28, 2020
作者:
Y
Yelrose
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add edge drop
上级
141fe25b
变更
12
显示空白变更内容
内联
并排
Showing
12 changed file
with
202 addition
and
49 deletion
+202
-49
examples/citation_benchmark/build_model.py
examples/citation_benchmark/build_model.py
+1
-6
examples/citation_benchmark/config/appnp.yaml
examples/citation_benchmark/config/appnp.yaml
+1
-0
examples/citation_benchmark/config/gat.yaml
examples/citation_benchmark/config/gat.yaml
+1
-0
examples/citation_benchmark/config/gcn.yaml
examples/citation_benchmark/config/gcn.yaml
+2
-1
examples/citation_benchmark/config/sgc.yaml
examples/citation_benchmark/config/sgc.yaml
+4
-0
examples/citation_benchmark/model.py
examples/citation_benchmark/model.py
+70
-11
examples/citation_benchmark/train.py
examples/citation_benchmark/train.py
+6
-5
pgl/__init__.py
pgl/__init__.py
+1
-0
pgl/graph_wrapper.py
pgl/graph_wrapper.py
+74
-19
pgl/layers/conv.py
pgl/layers/conv.py
+18
-7
pgl/sample.py
pgl/sample.py
+7
-0
pgl/utils/paddle_helper.py
pgl/utils/paddle_helper.py
+17
-0
未找到文件。
examples/citation_benchmark/build_model.py
浏览文件 @
3eb6d2a6
...
...
@@ -13,7 +13,7 @@ def build_model(dataset, config, phase, main_prog):
GraphModel
=
getattr
(
model
,
config
.
model_name
)
m
=
GraphModel
(
config
=
config
,
num_class
=
dataset
.
num_classes
)
logits
=
m
.
forward
(
gw
,
gw
.
node_feat
[
"words"
])
logits
=
m
.
forward
(
gw
,
gw
.
node_feat
[
"words"
]
,
phase
)
node_index
=
fluid
.
layers
.
data
(
"node_index"
,
...
...
@@ -33,11 +33,6 @@ def build_model(dataset, config, phase, main_prog):
loss
=
fluid
.
layers
.
mean
(
loss
)
if
phase
==
"train"
:
#adam = fluid.optimizer.Adam(
# learning_rate=config.learning_rate,
# regularization=fluid.regularizer.L2DecayRegularizer(
# regularization_coeff=config.weight_decay))
#adam.minimize(loss)
AdamW
(
loss
=
loss
,
learning_rate
=
config
.
learning_rate
,
weight_decay
=
config
.
weight_decay
,
...
...
examples/citation_benchmark/config/appnp.yaml
浏览文件 @
3eb6d2a6
...
...
@@ -6,3 +6,4 @@ learning_rate: 0.01
dropout
:
0.5
hidden_size
:
64
weight_decay
:
0.0005
edge_dropout
:
0.00
examples/citation_benchmark/config/gat.yaml
浏览文件 @
3eb6d2a6
...
...
@@ -6,3 +6,4 @@ feat_drop: 0.6
attn_drop
:
0.6
num_heads
:
8
hidden_size
:
8
edge_dropout
:
0.1
examples/citation_benchmark/config/gcn.yaml
浏览文件 @
3eb6d2a6
model_name
:
GCN
num_layers
:
1
dropout
:
0.5
hidden_size
:
64
hidden_size
:
16
learning_rate
:
0.01
weight_decay
:
0.0005
edge_dropout
:
0.0
examples/citation_benchmark/config/sgc.yaml
0 → 100644
浏览文件 @
3eb6d2a6
model_name
:
SGC
num_layers
:
2
learning_rate
:
0.2
weight_decay
:
0.000005
examples/citation_benchmark/model.py
浏览文件 @
3eb6d2a6
...
...
@@ -2,6 +2,12 @@ import pgl
import
paddle.fluid.layers
as
L
import
pgl.layers.conv
as
conv
def
get_norm
(
indegree
):
norm
=
L
.
pow
(
L
.
cast
(
indegree
,
dtype
=
"float32"
)
+
1e-6
,
factor
=-
0.5
)
norm
=
norm
*
L
.
cast
(
indegree
>
0
,
dtype
=
"float32"
)
return
norm
class
GCN
(
object
):
"""Implement of GCN
"""
...
...
@@ -10,14 +16,29 @@ class GCN(object):
self
.
num_layers
=
config
.
get
(
"num_layers"
,
1
)
self
.
hidden_size
=
config
.
get
(
"hidden_size"
,
64
)
self
.
dropout
=
config
.
get
(
"dropout"
,
0.5
)
self
.
edge_dropout
=
config
.
get
(
"edge_dropout"
,
0.0
)
def
forward
(
self
,
graph_wrapper
,
feature
,
phase
):
def
forward
(
self
,
graph_wrapper
,
feature
):
for
i
in
range
(
self
.
num_layers
):
feature
=
pgl
.
layers
.
gcn
(
graph_wrapper
,
if
phase
==
"train"
:
ngw
=
pgl
.
sample
.
edge_drop
(
graph_wrapper
,
self
.
edge_dropout
)
norm
=
get_norm
(
ngw
.
indegree
())
else
:
ngw
=
graph_wrapper
norm
=
graph_wrapper
.
node_feat
[
"norm"
]
feature
=
L
.
dropout
(
feature
,
self
.
dropout
,
dropout_implementation
=
'upscale_in_train'
)
feature
=
pgl
.
layers
.
gcn
(
ngw
,
feature
,
self
.
hidden_size
,
activation
=
"relu"
,
norm
=
graph_wrapper
.
node_feat
[
"norm"
]
,
norm
=
norm
,
name
=
"layer_%s"
%
i
)
feature
=
L
.
dropout
(
...
...
@@ -25,11 +46,18 @@ class GCN(object):
self
.
dropout
,
dropout_implementation
=
'upscale_in_train'
)
feature
=
conv
.
gcn
(
graph_wrapper
,
if
phase
==
"train"
:
ngw
=
pgl
.
sample
.
edge_drop
(
graph_wrapper
,
self
.
edge_dropout
)
norm
=
get_norm
(
ngw
.
indegree
())
else
:
ngw
=
graph_wrapper
norm
=
graph_wrapper
.
node_feat
[
"norm"
]
feature
=
conv
.
gcn
(
ngw
,
feature
,
self
.
num_class
,
activation
=
None
,
norm
=
graph_wrapper
.
node_feat
[
"norm"
]
,
norm
=
norm
,
name
=
"output"
)
return
feature
...
...
@@ -43,10 +71,18 @@ class GAT(object):
self
.
hidden_size
=
config
.
get
(
"hidden_size"
,
8
)
self
.
feat_dropout
=
config
.
get
(
"feat_drop"
,
0.6
)
self
.
attn_dropout
=
config
.
get
(
"attn_drop"
,
0.6
)
self
.
edge_dropout
=
config
.
get
(
"edge_dropout"
,
0.0
)
def
forward
(
self
,
graph_wrapper
,
feature
,
phase
):
if
phase
==
"train"
:
edge_dropout
=
0
else
:
edge_dropout
=
self
.
edge_dropout
def
forward
(
self
,
graph_wrapper
,
feature
):
for
i
in
range
(
self
.
num_layers
):
feature
=
conv
.
gat
(
graph_wrapper
,
ngw
=
pgl
.
sample
.
edge_drop
(
graph_wrapper
,
edge_dropout
)
feature
=
conv
.
gat
(
ngw
,
feature
,
self
.
hidden_size
,
activation
=
"elu"
,
...
...
@@ -55,7 +91,8 @@ class GAT(object):
feat_drop
=
self
.
feat_dropout
,
attn_drop
=
self
.
attn_dropout
)
feature
=
conv
.
gat
(
graph_wrapper
,
ngw
=
pgl
.
sample
.
edge_drop
(
graph_wrapper
,
edge_dropout
)
feature
=
conv
.
gat
(
ngw
,
feature
,
self
.
num_class
,
num_heads
=
1
,
...
...
@@ -75,8 +112,14 @@ class APPNP(object):
self
.
dropout
=
config
.
get
(
"dropout"
,
0.5
)
self
.
alpha
=
config
.
get
(
"alpha"
,
0.1
)
self
.
k_hop
=
config
.
get
(
"k_hop"
,
10
)
self
.
edge_dropout
=
config
.
get
(
"edge_dropout"
,
0.0
)
def
forward
(
self
,
graph_wrapper
,
feature
,
phase
):
if
phase
==
"train"
:
edge_dropout
=
0
else
:
edge_dropout
=
self
.
edge_dropout
def
forward
(
self
,
graph_wrapper
,
feature
):
for
i
in
range
(
self
.
num_layers
):
feature
=
L
.
dropout
(
feature
,
...
...
@@ -93,8 +136,24 @@ class APPNP(object):
feature
=
conv
.
appnp
(
graph_wrapper
,
feature
=
feature
,
norm
=
graph_wrapper
.
node_feat
[
"norm"
]
,
edge_dropout
=
edge_dropout
,
alpha
=
self
.
alpha
,
k_hop
=
self
.
k_hop
)
return
feature
class
SGC
(
object
):
"""Implement of SGC"""
def
__init__
(
self
,
config
,
num_class
):
self
.
num_class
=
num_class
self
.
num_layers
=
config
.
get
(
"num_layers"
,
1
)
def
forward
(
self
,
graph_wrapper
,
feature
,
phase
):
feature
=
conv
.
appnp
(
graph_wrapper
,
feature
=
feature
,
norm
=
graph_wrapper
.
node_feat
[
"norm"
],
alpha
=
0
,
k_hop
=
self
.
num_layers
)
feature
.
stop_gradient
=
True
feature
=
L
.
fc
(
feature
,
self
.
num_class
,
act
=
None
,
name
=
"output"
)
return
feature
examples/citation_benchmark/train.py
浏览文件 @
3eb6d2a6
...
...
@@ -63,6 +63,7 @@ def main(args, config):
config
=
config
,
phase
=
"test"
,
main_prog
=
test_program
)
test_program
=
test_program
.
clone
(
for_test
=
True
)
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -86,7 +87,7 @@ def main(args, config):
cal_val_acc
=
[]
cal_test_acc
=
[]
for
epoch
in
range
(
300
):
for
epoch
in
range
(
args
.
epoch
):
if
epoch
>=
3
:
t0
=
time
.
time
()
feed_dict
=
gw
.
to_feed
(
dataset
.
graph
)
...
...
@@ -123,11 +124,10 @@ def main(args, config):
test_loss
=
test_loss
[
0
]
test_acc
=
test_acc
[
0
]
cal_test_acc
.
append
(
test_acc
)
if
epoch
%
10
==
0
:
log
.
info
(
"Epoch %d "
%
epoch
+
"Train Loss: %f "
%
train_loss
+
"Train Acc: %f "
%
train_acc
+
"Val Loss: %f "
%
val_loss
+
"Val Acc: %f "
%
val_acc
+
" Test Loss: %f "
%
test_loss
+
" Test Acc: %f "
%
test_acc
)
+
"Val Loss: %f "
%
val_loss
+
"Val Acc: %f "
%
val_acc
)
cal_val_acc
=
np
.
array
(
cal_val_acc
)
log
.
info
(
"Model: %s Best Test Accuracy: %f"
%
(
config
.
model_name
,
...
...
@@ -140,6 +140,7 @@ if __name__ == '__main__':
"--dataset"
,
type
=
str
,
default
=
"cora"
,
help
=
"dataset (cora, pubmed)"
)
parser
.
add_argument
(
"--use_cuda"
,
action
=
'store_true'
,
help
=
"use_cuda"
)
parser
.
add_argument
(
"--conf"
,
type
=
str
,
help
=
"config file for models"
)
parser
.
add_argument
(
"--epoch"
,
type
=
int
,
default
=
200
,
help
=
"Epoch"
)
args
=
parser
.
parse_args
()
config
=
edict
(
yaml
.
load
(
open
(
args
.
conf
),
Loader
=
yaml
.
FullLoader
))
log
.
info
(
args
)
...
...
pgl/__init__.py
浏览文件 @
3eb6d2a6
...
...
@@ -22,3 +22,4 @@ from pgl import heter_graph
from
pgl
import
heter_graph_wrapper
from
pgl
import
contrib
from
pgl
import
message_passing
from
pgl
import
sample
pgl/graph_wrapper.py
浏览文件 @
3eb6d2a6
...
...
@@ -19,6 +19,7 @@ for PaddlePaddle.
import
warnings
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
L
from
pgl.utils
import
op
from
pgl.utils
import
paddle_helper
...
...
@@ -47,10 +48,10 @@ def recv(dst, uniq_dst, bucketing_index, msg, reduce_function, num_nodes,
try
:
out_dim
=
msg
.
shape
[
-
1
]
init_output
=
fluid
.
layers
.
fill_constant
(
init_output
=
L
.
fill_constant
(
shape
=
[
num_nodes
,
out_dim
],
value
=
0
,
dtype
=
msg
.
dtype
)
init_output
.
stop_gradient
=
False
empty_msg_flag
=
fluid
.
layers
.
cast
(
num_edges
>
0
,
dtype
=
msg
.
dtype
)
empty_msg_flag
=
L
.
cast
(
num_edges
>
0
,
dtype
=
msg
.
dtype
)
msg
=
msg
*
empty_msg_flag
output
=
paddle_helper
.
scatter_add
(
init_output
,
dst
,
msg
)
return
output
...
...
@@ -59,7 +60,7 @@ def recv(dst, uniq_dst, bucketing_index, msg, reduce_function, num_nodes,
"scatter_add is not supported with paddle version <= 1.5"
)
def
sum_func
(
message
):
return
fluid
.
layers
.
sequence_pool
(
message
,
"sum"
)
return
L
.
sequence_pool
(
message
,
"sum"
)
reduce_function
=
sum_func
...
...
@@ -67,13 +68,13 @@ def recv(dst, uniq_dst, bucketing_index, msg, reduce_function, num_nodes,
output
=
reduce_function
(
bucketed_msg
)
output_dim
=
output
.
shape
[
-
1
]
empty_msg_flag
=
fluid
.
layers
.
cast
(
num_edges
>
0
,
dtype
=
output
.
dtype
)
empty_msg_flag
=
L
.
cast
(
num_edges
>
0
,
dtype
=
output
.
dtype
)
output
=
output
*
empty_msg_flag
init_output
=
fluid
.
layers
.
fill_constant
(
init_output
=
L
.
fill_constant
(
shape
=
[
num_nodes
,
output_dim
],
value
=
0
,
dtype
=
output
.
dtype
)
init_output
.
stop_gradient
=
True
final_output
=
fluid
.
layers
.
scatter
(
init_output
,
uniq_dst
,
output
)
final_output
=
L
.
scatter
(
init_output
,
uniq_dst
,
output
)
return
final_output
...
...
@@ -104,6 +105,7 @@ class BaseGraphWrapper(object):
self
.
_node_ids
=
None
self
.
_graph_lod
=
None
self
.
_num_graph
=
None
self
.
_num_edges
=
None
self
.
_data_name_prefix
=
""
def
__repr__
(
self
):
...
...
@@ -470,7 +472,7 @@ class StaticGraphWrapper(BaseGraphWrapper):
class
GraphWrapper
(
BaseGraphWrapper
):
"""Implement a graph wrapper that creates a graph data holders
that attributes and features in the graph are :code:`
fluid.layers
.data`.
that attributes and features in the graph are :code:`
L
.data`.
And we provide interface :code:`to_feed` to help converting :code:`Graph`
data into :code:`feed_dict`.
...
...
@@ -546,65 +548,65 @@ class GraphWrapper(BaseGraphWrapper):
def
__create_graph_attr_holders
(
self
):
"""Create data holders for graph attributes.
"""
self
.
_num_edges
=
fluid
.
layers
.
data
(
self
.
_num_edges
=
L
.
data
(
self
.
_data_name_prefix
+
'/num_edges'
,
shape
=
[
1
],
append_batch_size
=
False
,
dtype
=
"int64"
,
stop_gradient
=
True
)
self
.
_num_graph
=
fluid
.
layers
.
data
(
self
.
_num_graph
=
L
.
data
(
self
.
_data_name_prefix
+
'/num_graph'
,
shape
=
[
1
],
append_batch_size
=
False
,
dtype
=
"int64"
,
stop_gradient
=
True
)
self
.
_edges_src
=
fluid
.
layers
.
data
(
self
.
_edges_src
=
L
.
data
(
self
.
_data_name_prefix
+
'/edges_src'
,
shape
=
[
None
],
append_batch_size
=
False
,
dtype
=
"int64"
,
stop_gradient
=
True
)
self
.
_edges_dst
=
fluid
.
layers
.
data
(
self
.
_edges_dst
=
L
.
data
(
self
.
_data_name_prefix
+
'/edges_dst'
,
shape
=
[
None
],
append_batch_size
=
False
,
dtype
=
"int64"
,
stop_gradient
=
True
)
self
.
_num_nodes
=
fluid
.
layers
.
data
(
self
.
_num_nodes
=
L
.
data
(
self
.
_data_name_prefix
+
'/num_nodes'
,
shape
=
[
1
],
append_batch_size
=
False
,
dtype
=
'int64'
,
stop_gradient
=
True
)
self
.
_edge_uniq_dst
=
fluid
.
layers
.
data
(
self
.
_edge_uniq_dst
=
L
.
data
(
self
.
_data_name_prefix
+
"/uniq_dst"
,
shape
=
[
None
],
append_batch_size
=
False
,
dtype
=
"int64"
,
stop_gradient
=
True
)
self
.
_graph_lod
=
fluid
.
layers
.
data
(
self
.
_graph_lod
=
L
.
data
(
self
.
_data_name_prefix
+
"/graph_lod"
,
shape
=
[
None
],
append_batch_size
=
False
,
dtype
=
"int32"
,
stop_gradient
=
True
)
self
.
_edge_uniq_dst_count
=
fluid
.
layers
.
data
(
self
.
_edge_uniq_dst_count
=
L
.
data
(
self
.
_data_name_prefix
+
"/uniq_dst_count"
,
shape
=
[
None
],
append_batch_size
=
False
,
dtype
=
"int32"
,
stop_gradient
=
True
)
self
.
_node_ids
=
fluid
.
layers
.
data
(
self
.
_node_ids
=
L
.
data
(
self
.
_data_name_prefix
+
"/node_ids"
,
shape
=
[
None
],
append_batch_size
=
False
,
dtype
=
"int64"
,
stop_gradient
=
True
)
self
.
_indegree
=
fluid
.
layers
.
data
(
self
.
_indegree
=
L
.
data
(
self
.
_data_name_prefix
+
"/indegree"
,
shape
=
[
None
],
append_batch_size
=
False
,
...
...
@@ -627,7 +629,7 @@ class GraphWrapper(BaseGraphWrapper):
node_feat_dtype
):
"""Create data holders for node features.
"""
feat_holder
=
fluid
.
layers
.
data
(
feat_holder
=
L
.
data
(
self
.
_data_name_prefix
+
'/node_feat/'
+
node_feat_name
,
shape
=
node_feat_shape
,
append_batch_size
=
False
,
...
...
@@ -640,7 +642,7 @@ class GraphWrapper(BaseGraphWrapper):
edge_feat_dtype
):
"""Create edge holders for edge features.
"""
feat_holder
=
fluid
.
layers
.
data
(
feat_holder
=
L
.
data
(
self
.
_data_name_prefix
+
'/edge_feat/'
+
edge_feat_name
,
shape
=
edge_feat_shape
,
append_batch_size
=
False
,
...
...
@@ -719,3 +721,56 @@ class GraphWrapper(BaseGraphWrapper):
"""Return the holder list.
"""
return
self
.
_holder_list
def
get_degree
(
edge
,
num_nodes
):
init_output
=
L
.
fill_constant
(
shape
=
[
num_nodes
],
value
=
0
,
dtype
=
"float32"
)
init_output
.
stop_gradient
=
True
final_output
=
L
.
scatter
(
init_output
,
edge
,
L
.
full_like
(
edge
,
1
,
dtype
=
"float32"
),
overwrite
=
False
)
return
final_output
class
DropEdgeWrapper
(
BaseGraphWrapper
):
"""Implement of Edge Drop """
def
__init__
(
self
,
graph_wrapper
,
dropout
):
super
(
DropEdgeWrapper
,
self
).
__init__
()
# Copy Node's information
for
key
,
value
in
graph_wrapper
.
node_feat
.
items
():
self
.
node_feat_tensor_dict
[
key
]
=
value
self
.
_num_nodes
=
graph_wrapper
.
num_nodes
self
.
_graph_lod
=
graph_wrapper
.
graph_lod
self
.
_num_graph
=
graph_wrapper
.
num_graph
self
.
_node_ids
=
L
.
range
(
0
,
self
.
_num_nodes
,
step
=
1
,
dtype
=
"int32"
)
# Dropout Edges
src
,
dst
=
graph_wrapper
.
edges
u
=
L
.
uniform_random
(
shape
=
L
.
cast
(
L
.
shape
(
src
),
'int64'
),
min
=
0.
,
max
=
1.
)
# Avoid Empty Edges
keeped
=
L
.
cast
(
u
>
dropout
,
dtype
=
"float32"
)
self
.
_num_edges
=
L
.
reduce_sum
(
L
.
cast
(
keeped
,
"int32"
))
keeped
=
keeped
+
L
.
cast
(
self
.
_num_edges
==
0
,
dtype
=
"float32"
)
keeped
=
(
keeped
>
0.5
)
src
=
paddle_helper
.
masked_select
(
src
,
keeped
)
dst
=
paddle_helper
.
masked_select
(
dst
,
keeped
)
src
.
stop_gradient
=
True
dst
.
stop_gradient
=
True
self
.
_edges_src
=
src
self
.
_edges_dst
=
dst
for
key
,
value
in
graph_wrapper
.
edge_feat
.
items
():
self
.
edge_feat_tensor_dict
[
key
]
=
paddle_helper
.
masked_select
(
value
,
keeped
)
self
.
_edge_uniq_dst
,
_
,
uniq_count
=
L
.
unique_with_counts
(
dst
,
dtype
=
"int32"
)
self
.
_edge_uniq_dst
.
stop_gradient
=
True
last
=
L
.
reduce_sum
(
uniq_count
,
keep_dim
=
True
)
uniq_count
=
L
.
cumsum
(
uniq_count
,
exclusive
=
True
)
self
.
_edge_uniq_dst_count
=
L
.
concat
([
uniq_count
,
last
])
self
.
_edge_uniq_dst_count
.
stop_gradient
=
True
self
.
_indegree
=
get_degree
(
self
.
_edges_dst
,
self
.
_num_nodes
)
pgl/layers/conv.py
浏览文件 @
3eb6d2a6
...
...
@@ -14,6 +14,7 @@
"""This package implements common layers to help building
graph neural networks.
"""
import
pgl
import
paddle.fluid
as
fluid
from
pgl.utils
import
paddle_helper
from
pgl
import
message_passing
...
...
@@ -404,7 +405,14 @@ def gen_conv(gw,
return
output
def
appnp
(
gw
,
feature
,
norm
=
None
,
alpha
=
0.2
,
k_hop
=
10
):
def
get_norm
(
indegree
):
"""Get Laplacian Normalization"""
norm
=
fluid
.
layers
.
pow
(
fluid
.
layers
.
cast
(
indegree
,
dtype
=
"float32"
)
+
1e-6
,
factor
=-
0.5
)
norm
=
norm
*
fluid
.
layers
.
cast
(
indegree
>
0
,
dtype
=
"float32"
)
return
norm
def
appnp
(
gw
,
feature
,
edge_dropout
=
0
,
alpha
=
0.2
,
k_hop
=
10
):
"""Implementation of APPNP of "Predict then Propagate: Graph Neural Networks
meet Personalized PageRank" (ICLR 2019).
...
...
@@ -413,8 +421,7 @@ def appnp(gw, feature, norm=None, alpha=0.2, k_hop=10):
feature: A tensor with shape (num_nodes, feature_size).
norm: If :code:`norm` is not None, then the feature will be normalized. Norm must
be tensor with shape (num_nodes,) and dtype float32.
edge_dropout: Edge dropout rate.
k_hop: K Steps for Propagation
...
...
@@ -427,16 +434,20 @@ def appnp(gw, feature, norm=None, alpha=0.2, k_hop=10):
return
feature
h0
=
feature
ngw
=
gw
norm
=
get_norm
(
ngw
.
indegree
())
for
i
in
range
(
k_hop
):
if
norm
is
not
None
:
if
edge_dropout
>
1e-5
:
ngw
=
pgl
.
sample
.
edge_drop
(
gw
,
edge_dropout
)
norm
=
get_norm
(
ngw
.
indegree
())
feature
=
feature
*
norm
msg
=
gw
.
send
(
send_src_copy
,
nfeat_list
=
[(
"h"
,
feature
)])
feature
=
gw
.
recv
(
msg
,
"sum"
)
if
norm
is
not
None
:
feature
=
feature
*
norm
feature
=
feature
*
(
1
-
alpha
)
+
h0
*
alpha
...
...
pgl/sample.py
浏览文件 @
3eb6d2a6
...
...
@@ -516,3 +516,10 @@ def graph_saint_random_walk_sample(graph,
nodes
=
sample_nodes
,
eid
=
eids
,
with_node_feat
=
True
,
with_edge_feat
=
True
)
subgraph
.
node_feat
[
"index"
]
=
np
.
array
(
sample_nodes
,
dtype
=
"int64"
)
return
subgraph
def
edge_drop
(
graph_wrapper
,
dropout_rate
):
if
dropout_rate
<
1e-5
:
return
graph_wrapper
else
:
return
pgl
.
graph_wrapper
.
DropEdgeWrapper
(
graph_wrapper
,
dropout_rate
)
pgl/utils/paddle_helper.py
浏览文件 @
3eb6d2a6
...
...
@@ -250,3 +250,20 @@ def scatter_max(input, index, updates):
output
=
fluid
.
layers
.
scatter
(
input
,
index
,
updates
,
mode
=
'max'
)
return
output
def
masked_select
(
input
,
mask
):
"""masked_select
Slice the value from given Mask
Args:
input: Input tensor to be selected
mask: A bool tensor for sliced.
Return:
Part of inputs where mask is True.
"""
index
=
fluid
.
layers
.
where
(
mask
)
return
fluid
.
layers
.
gather
(
input
,
index
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录