diff --git a/ogb_examples/nodeproppred/unimp/main_product.py b/ogb_examples/nodeproppred/unimp/main_product.py index 3a3141a6a6e01dd2f9325bf908ba802174f40bb7..e131e4b4ef21d5b6b89baeee04063a72e24524b1 100644 --- a/ogb_examples/nodeproppred/unimp/main_product.py +++ b/ogb_examples/nodeproppred/unimp/main_product.py @@ -22,14 +22,14 @@ evaluator = Evaluator(name='ogbn-products') def get_config(): parser = argparse.ArgumentParser() - ## 采样参数 + ## data_sampling_arg data_group= parser.add_argument_group('data_arg') data_group.add_argument('--batch_size', default=1500, type=int) data_group.add_argument('--num_workers', default=12, type=int) data_group.add_argument('--sizes', default=[10, 10, 10], type=int, nargs='+' ) data_group.add_argument('--buf_size', default=1000, type=int) - ## 基本模型参数 + ## model_arg model_group=parser.add_argument_group('model_base_arg') model_group.add_argument('--num_layers', default=3, type=int) model_group.add_argument('--hidden_size', default=128, type=int) @@ -37,7 +37,7 @@ def get_config(): model_group.add_argument('--dropout', default=0.3, type=float) model_group.add_argument('--attn_dropout', default=0, type=float) - ## label embedding模型参数 + ## label_embed_arg embed_group=parser.add_argument_group('embed_arg') embed_group.add_argument('--use_label_e', action='store_true') embed_group.add_argument('--label_rate', default=0.625, type=float) @@ -113,7 +113,7 @@ def eval_test(parser, test_p_list, model, test_exe, dataset, split_idx): def train_loop(parser, start_program, main_program, test_p_list, model, feat_init, place, dataset, split_idx, exe, run_id, wf=None): - #启动上文构建的训练器 + #build up training program exe.run(start_program) feat_init(place) @@ -122,10 +122,10 @@ def train_loop(parser, start_program, main_program, test_p_list, max_val_acc=0 # 最佳val_acc max_cor_acc=0 # 最佳val_acc对应test_acc max_cor_step=0 # 最佳val_acc对应step - #训练循环 + #training loop for epoch_id in range(parser.epochs): - #运行训练器 + #start training if parser.use_label_e: train_idx_temp=copy.deepcopy(split_idx['train']) @@ -158,8 +158,7 @@ def train_loop(parser, start_program, main_program, test_p_list, print('acc: ', (acc_num/unlabel_idx.shape[0])*100) - #测试结果 -# total=0.0 + #eval result if (epoch_id+1)>=50 and (epoch_id+1)%10==0: result = eval_test(parser, test_p_list, model, exe, dataset, split_idx) train_acc, valid_acc, test_acc = result @@ -242,17 +241,14 @@ if __name__ == '__main__': # test_prog=train_prog.clone(for_test=True) model.train_program() -# ave_loss = train_program(pred_output)#训练程序 -# lr, global_step= linear_warmup_decay(0.01, 50, 500) -# adam_optimizer = optimizer_func(lr)#训练优化函数 - adam_optimizer = optimizer_func(parser.lr)#训练优化函数 + adam_optimizer = optimizer_func(parser.lr)#optimizer adam_optimizer.minimize(model.avg_cost) test_p_list=[] with F.unique_name.guard(): - ## input层 + ## build up eval program test_p=F.Program() with F.program_guard(test_p, ): gw_test=pgl.graph_wrapper.GraphWrapper( @@ -281,7 +277,7 @@ if __name__ == '__main__': with F.program_guard(test_p, ): gw_test=pgl.graph_wrapper.GraphWrapper( name="product_"+str(0)) -# feature_batch=model.get_batch_feature(label_feature, test=True) # 把图在CPU存起 +# feature_batch=model.get_batch_feature(label_feature, test=True) feature_batch = F.data( 'hidden_node_feat', shape=[None, model.num_heads*model.hidden_size], dtype='float32') @@ -322,4 +318,4 @@ if __name__ == '__main__': total_test_acc+=train_loop(parser, startup_prog, train_prog, test_p_list, model, feat_init, place, dataset, split_idx, exe, run_i, wf) wf.write(f'average: {100 * (total_test_acc/parser.runs):.2f}%') - wf.close() \ No newline at end of file + wf.close()