diff --git a/docs/source/quick_start/md/quick_start_for_heterGraph.md b/docs/source/quick_start/md/quick_start_for_heterGraph.md index 37ac0de4c362a097518f775da340907408f9a31e..aae818c0be633a5708eb2ea29636077f3c919425 100644 --- a/docs/source/quick_start/md/quick_start_for_heterGraph.md +++ b/docs/source/quick_start/md/quick_start_for_heterGraph.md @@ -58,8 +58,8 @@ Now, we can build a heterogenous graph by using PGL. import paddle.fluid as fluid import paddle.fluid.layers as fl import pgl -from pgl.contrib import heter_graph -from pgl.contrib import heter_graph_wrapper +from pgl import heter_graph +from pgl import heter_graph_wrapper g = heter_graph.HeterGraph(num_nodes=num_nodes, edges=edges, @@ -160,8 +160,3 @@ for epoch in range(30): train_loss = exe.run(fluid.default_main_program(), feed=feed_dict, fetch_list=[loss], return_numpy=True) print('Epoch %d | Loss: %f'%(epoch, train_loss[0])) ``` - - - - -