conv.py 12.3 KB
Newer Older
W
wangwenjin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This package implements common layers to help building
graph neural networks.
"""
import paddle.fluid as fluid
from pgl import graph_wrapper
from pgl.utils import paddle_helper

__all__ = ['gcn', 'gat', 'gin', 'gaan']


def gcn(gw, feature, hidden_size, activation, name, norm=None):
    """Implementation of graph convolutional neural networks (GCN)

    This is an implementation of the paper SEMI-SUPERVISED CLASSIFICATION
    WITH GRAPH CONVOLUTIONAL NETWORKS (https://arxiv.org/pdf/1609.02907.pdf).

    Args:
        gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)

        feature: A tensor with shape (num_nodes, feature_size).

        hidden_size: The hidden size for gcn.

        activation: The activation for the output.

        name: Gcn layer names.

        norm: If :code:`norm` is not None, then the feature will be normalized. Norm must
              be tensor with shape (num_nodes,) and dtype float32.

    Return:
        A tensor with shape (num_nodes, hidden_size)
    """

    def send_src_copy(src_feat, dst_feat, edge_feat):
        return src_feat["h"]

    size = feature.shape[-1]
    if size > hidden_size:
        feature = fluid.layers.fc(feature,
                                  size=hidden_size,
                                  bias_attr=False,
                                  param_attr=fluid.ParamAttr(name=name))

    if norm is not None:
        feature = feature * norm

    msg = gw.send(send_src_copy, nfeat_list=[("h", feature)])

    if size > hidden_size:
        output = gw.recv(msg, "sum")
    else:
        output = gw.recv(msg, "sum")
        output = fluid.layers.fc(output,
                                 size=hidden_size,
                                 bias_attr=False,
                                 param_attr=fluid.ParamAttr(name=name))

    if norm is not None:
        output = output * norm

    bias = fluid.layers.create_parameter(
        shape=[hidden_size],
        dtype='float32',
        is_bias=True,
        name=name + '_bias')
    output = fluid.layers.elementwise_add(output, bias, act=activation)
    return output


def gat(gw,
        feature,
        hidden_size,
        activation,
        name,
        num_heads=8,
        feat_drop=0.6,
        attn_drop=0.6,
        is_test=False):
    """Implementation of graph attention networks (GAT)

    This is an implementation of the paper GRAPH ATTENTION NETWORKS
    (https://arxiv.org/abs/1710.10903).

    Args:
        gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)

        feature: A tensor with shape (num_nodes, feature_size).

        hidden_size: The hidden size for gat.

        activation: The activation for the output.

        name: Gat layer names.

        num_heads: The head number in gat.

        feat_drop: Dropout rate for feature.

        attn_drop: Dropout rate for attention.

        is_test: Whether in test phrase.

    Return:
        A tensor with shape (num_nodes, hidden_size * num_heads)
    """

    def send_attention(src_feat, dst_feat, edge_feat):
        output = src_feat["left_a"] + dst_feat["right_a"]
        output = fluid.layers.leaky_relu(
            output, alpha=0.2)  # (num_edges, num_heads)
        return {"alpha": output, "h": src_feat["h"]}

    def reduce_attention(msg):
        alpha = msg["alpha"]  # lod-tensor (batch_size, seq_len, num_heads)
        h = msg["h"]
        alpha = paddle_helper.sequence_softmax(alpha)
        old_h = h
        h = fluid.layers.reshape(h, [-1, num_heads, hidden_size])
        alpha = fluid.layers.reshape(alpha, [-1, num_heads, 1])
        if attn_drop > 1e-15:
            alpha = fluid.layers.dropout(
                alpha,
                dropout_prob=attn_drop,
                is_test=is_test,
                dropout_implementation="upscale_in_train")
        h = h * alpha
        h = fluid.layers.reshape(h, [-1, num_heads * hidden_size])
        h = fluid.layers.lod_reset(h, old_h)
        return fluid.layers.sequence_pool(h, "sum")

    if feat_drop > 1e-15:
        feature = fluid.layers.dropout(
            feature,
            dropout_prob=feat_drop,
            is_test=is_test,
            dropout_implementation='upscale_in_train')

    ft = fluid.layers.fc(feature,
                         hidden_size * num_heads,
                         bias_attr=False,
                         param_attr=fluid.ParamAttr(name=name + '_weight'))
    left_a = fluid.layers.create_parameter(
        shape=[num_heads, hidden_size],
        dtype='float32',
        name=name + '_gat_l_A')
    right_a = fluid.layers.create_parameter(
        shape=[num_heads, hidden_size],
        dtype='float32',
        name=name + '_gat_r_A')
    reshape_ft = fluid.layers.reshape(ft, [-1, num_heads, hidden_size])
    left_a_value = fluid.layers.reduce_sum(reshape_ft * left_a, -1)
    right_a_value = fluid.layers.reduce_sum(reshape_ft * right_a, -1)

    msg = gw.send(
        send_attention,
        nfeat_list=[("h", ft), ("left_a", left_a_value),
                    ("right_a", right_a_value)])
    output = gw.recv(msg, reduce_attention)
    bias = fluid.layers.create_parameter(
        shape=[hidden_size * num_heads],
        dtype='float32',
        is_bias=True,
        name=name + '_bias')
    bias.stop_gradient = True
    output = fluid.layers.elementwise_add(output, bias, act=activation)
    return output


def gin(gw,
        feature,
        hidden_size,
        activation,
        name,
        init_eps=0.0,
        train_eps=False):
    """Implementation of Graph Isomorphism Network (GIN) layer.

    This is an implementation of the paper How Powerful are Graph Neural Networks?
    (https://arxiv.org/pdf/1810.00826.pdf).

    In their implementation, all MLPs have 2 layers. Batch normalization is applied
    on every hidden layer.

    Args:
        gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)

        feature: A tensor with shape (num_nodes, feature_size).

        name: GIN layer names.

        hidden_size: The hidden size for gin.

        activation: The activation for the output.

        init_eps: float, optional
            Initial :math:`\epsilon` value, default is 0.

        train_eps: bool, optional
            if True, :math:`\epsilon` will be a learnable parameter.

    Return:
        A tensor with shape (num_nodes, hidden_size).
    """

    def send_src_copy(src_feat, dst_feat, edge_feat):
        return src_feat["h"]

    epsilon = fluid.layers.create_parameter(
        shape=[1, 1],
        dtype="float32",
        attr=fluid.ParamAttr(name="%s_eps" % name),
        default_initializer=fluid.initializer.ConstantInitializer(
            value=init_eps))

    if not train_eps:
        epsilon.stop_gradient = True

    msg = gw.send(send_src_copy, nfeat_list=[("h", feature)])
    output = gw.recv(msg, "sum") + feature * (epsilon + 1.0)

    output = fluid.layers.fc(output,
                             size=hidden_size,
                             act=None,
                             param_attr=fluid.ParamAttr(name="%s_w_0" % name),
                             bias_attr=fluid.ParamAttr(name="%s_b_0" % name))

    output = fluid.layers.layer_norm(
        output,
        begin_norm_axis=1,
        param_attr=fluid.ParamAttr(
            name="norm_scale_%s" % (name),
            initializer=fluid.initializer.Constant(1.0)),
        bias_attr=fluid.ParamAttr(
            name="norm_bias_%s" % (name),
            initializer=fluid.initializer.Constant(0.0)), )

    if activation is not None:
        output = getattr(fluid.layers, activation)(output)

    output = fluid.layers.fc(output,
                             size=hidden_size,
                             act=activation,
                             param_attr=fluid.ParamAttr(name="%s_w_1" % name),
                             bias_attr=fluid.ParamAttr(name="%s_b_1" % name))

    return output


def gaan(gw, feature, hidden_size_a, hidden_size_v, hidden_size_m, hidden_size_o, heads, name):
    """Implementation of GaAN"""

    def send_func(src_feat, dst_feat, edge_feat):
        # 计算每条边上的注意力分数
        # E * (M * D1), 每个 dst 点都查询它的全部邻边的 src 点
        feat_query, feat_key = dst_feat['feat_query'], src_feat['feat_key']
        # E * M * D1
        old = feat_query
        feat_query = fluid.layers.reshape(feat_query, [-1, heads, hidden_size_a])
        feat_key = fluid.layers.reshape(feat_key, [-1, heads, hidden_size_a])
        # E * M
        alpha = fluid.layers.reduce_sum(feat_key * feat_query, dim=-1)

        return {'dst_node_feat': dst_feat['node_feat'],
                'src_node_feat': src_feat['node_feat'],
                'feat_value': src_feat['feat_value'],
                'alpha': alpha,
                'feat_gate': src_feat['feat_gate']}

    def recv_func(message):
        # 每条边的终点的特征
        dst_feat = message['dst_node_feat']
        # 每条边的出发点的特征
        src_feat = message['src_node_feat']
        # 每个中心点自己的特征
        x = fluid.layers.sequence_pool(dst_feat, 'average')
        # 每个中心点的邻居的特征的平均值
        z = fluid.layers.sequence_pool(src_feat, 'average')

        # 计算 gate
        feat_gate = message['feat_gate']
        g_max = fluid.layers.sequence_pool(feat_gate, 'max')
        g = fluid.layers.concat([x, g_max, z], axis=1)
        g = fluid.layers.fc(g, heads, bias_attr=False, act="sigmoid")

        # softmax
        alpha = message['alpha']
        alpha = paddle_helper.sequence_softmax(alpha) # E * M

        feat_value = message['feat_value'] # E * (M * D2)
        old = feat_value
        feat_value = fluid.layers.reshape(feat_value, [-1, heads, hidden_size_v]) # E * M * D2
        feat_value = fluid.layers.elementwise_mul(feat_value, alpha, axis=0)
        feat_value = fluid.layers.reshape(feat_value, [-1, heads*hidden_size_v]) # E * (M * D2)
        feat_value = fluid.layers.lod_reset(feat_value, old)

        feat_value = fluid.layers.sequence_pool(feat_value, 'sum') # N * (M * D2)

        feat_value = fluid.layers.reshape(feat_value, [-1, heads, hidden_size_v]) # N * M * D2

        output = fluid.layers.elementwise_mul(feat_value, g, axis=0)
        output = fluid.layers.reshape(output, [-1, heads * hidden_size_v]) # N * (M * D2)

        output = fluid.layers.concat([x, output], axis=1)

        return output

    # feature N * D

    # 计算每个点自己需要发送出去的内容
    # 投影后的特征向量
    # N * (D1 * M)
    feat_key = fluid.layers.fc(feature, hidden_size_a * heads, bias_attr=False,
                     param_attr=fluid.ParamAttr(name=name + '_project_key'))
    # N * (D2 * M)
    feat_value = fluid.layers.fc(feature, hidden_size_v * heads, bias_attr=False,
                     param_attr=fluid.ParamAttr(name=name + '_project_value'))
    # N * (D1 * M)
    feat_query = fluid.layers.fc(feature, hidden_size_a * heads, bias_attr=False,
                     param_attr=fluid.ParamAttr(name=name + '_project_query'))
    # N * Dm
    feat_gate = fluid.layers.fc(feature, hidden_size_m, bias_attr=False, 
                                param_attr=fluid.ParamAttr(name=name + '_project_gate'))

    # send 阶段

    message = gw.send(
        send_func,
        nfeat_list=[('node_feat', feature), ('feat_key', feat_key), ('feat_value', feat_value),
                    ('feat_query', feat_query), ('feat_gate', feat_gate)],
        efeat_list=None,
    )

    # 聚合邻居特征
    output = gw.recv(message, recv_func)
    output = fluid.layers.fc(output, hidden_size_o, bias_attr=False,
                            param_attr=fluid.ParamAttr(name=name + '_project_output'))
    output = fluid.layers.leaky_relu(output, alpha=0.1)
    output = fluid.layers.dropout(output, dropout_prob=0.1)

    return output