message_passing.py 7.9 KB
Newer Older
F
fengshikun01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This package implements some common message passing 
functions to help building graph neural networks.
"""

import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as L
from pgl.utils import paddle_helper

__all__ = ['copy_send', 'weighted_copy_send', 'mean_recv', 
        'sum_recv', 'max_recv', 'lstm_recv', 'graphsage_sum',
        'graphsage_mean', 'pinsage_mean', 'pinsage_sum', 
        'softmax_agg', 'msg_norm']


def copy_send(src_feat, dst_feat, edge_feat):
    """doc"""
    return src_feat["h"]

def weighted_copy_send(src_feat, dst_feat, edge_feat):
    """doc"""
    return src_feat["h"] * edge_feat["weight"]

def mean_recv(feat):
    """doc"""
    return fluid.layers.sequence_pool(feat, pool_type="average")


def sum_recv(feat):
    """doc"""
    return fluid.layers.sequence_pool(feat, pool_type="sum")


def max_recv(feat):
    """doc"""
    return fluid.layers.sequence_pool(feat, pool_type="max")


def lstm_recv(feat):
    """doc"""
    hidden_dim = 128
    forward, _ = fluid.layers.dynamic_lstm(
        input=feat, size=hidden_dim * 4, use_peepholes=False)
    output = fluid.layers.sequence_last_step(forward)
    return output


def graphsage_sum(gw, feature, hidden_size, act, initializer, learning_rate, name):
    """doc"""
    msg = gw.send(copy_send, nfeat_list=[("h", feature)])
    neigh_feature = gw.recv(msg, sum_recv)
    self_feature = feature
    self_feature = fluid.layers.fc(self_feature,
                                   hidden_size,
                                   act=act,
                                   param_attr=fluid.ParamAttr(name=name + "_l.w_0", initializer=initializer,
                                   learning_rate=learning_rate),
                                    bias_attr=name+"_l.b_0"
                                   )
    neigh_feature = fluid.layers.fc(neigh_feature,
                                    hidden_size,
                                    act=act,
                                    param_attr=fluid.ParamAttr(name=name + "_r.w_0", initializer=initializer,
                                   learning_rate=learning_rate),
                                    bias_attr=name+"_r.b_0"
                                    )
    output = fluid.layers.concat([self_feature, neigh_feature], axis=1)
    output = fluid.layers.l2_normalize(output, axis=1)
    return output


def graphsage_mean(gw, feature, hidden_size, act, initializer, learning_rate, name):
    """doc"""
    msg = gw.send(copy_send, nfeat_list=[("h", feature)])
    neigh_feature = gw.recv(msg, mean_recv)
    self_feature = feature
    self_feature = fluid.layers.fc(self_feature,
                                   hidden_size,
                                   act=act,
                                   param_attr=fluid.ParamAttr(name=name + "_l.w_0", initializer=initializer,
                                   learning_rate=learning_rate),
                                    bias_attr=name+"_l.b_0"
                                   )
    neigh_feature = fluid.layers.fc(neigh_feature,
                                    hidden_size,
                                    act=act,
                                    param_attr=fluid.ParamAttr(name=name + "_r.w_0", initializer=initializer,
                                   learning_rate=learning_rate),
                                    bias_attr=name+"_r.b_0"
                                    )
    output = fluid.layers.concat([self_feature, neigh_feature], axis=1)
    output = fluid.layers.l2_normalize(output, axis=1)
    return output


def pinsage_mean(gw, feature, hidden_size, act, initializer, learning_rate, name):
    """doc"""
    msg = gw.send(weighted_copy_send, nfeat_list=[("h", feature)], efeat_list=["weight"])
    neigh_feature = gw.recv(msg, mean_recv)
    self_feature = feature
    self_feature = fluid.layers.fc(self_feature,
                                   hidden_size,
                                   act=act,
                                   param_attr=fluid.ParamAttr(name=name + "_l.w_0", initializer=initializer,
                                   learning_rate=learning_rate),
                                    bias_attr=name+"_l.b_0"
                                   )
    neigh_feature = fluid.layers.fc(neigh_feature,
                                    hidden_size,
                                    act=act,
                                    param_attr=fluid.ParamAttr(name=name + "_r.w_0", initializer=initializer,
                                   learning_rate=learning_rate),
                                    bias_attr=name+"_r.b_0"
                                    )
    output = fluid.layers.concat([self_feature, neigh_feature], axis=1)
    output = fluid.layers.l2_normalize(output, axis=1)
    return output


def pinsage_sum(gw, feature, hidden_size, act, initializer, learning_rate, name):
    """doc"""
    msg = gw.send(weighted_copy_send, nfeat_list=[("h", feature)], efeat_list=["weight"])
    neigh_feature = gw.recv(msg, sum_recv)
    self_feature = feature
    self_feature = fluid.layers.fc(self_feature,
                                   hidden_size,
                                   act=act,
                                   param_attr=fluid.ParamAttr(name=name + "_l.w_0", initializer=initializer,
                                   learning_rate=learning_rate),
                                    bias_attr=name+"_l.b_0"
                                   )
    neigh_feature = fluid.layers.fc(neigh_feature,
                                    hidden_size,
                                    act=act,
                                    param_attr=fluid.ParamAttr(name=name + "_r.w_0", initializer=initializer,
                                   learning_rate=learning_rate),
                                    bias_attr=name+"_r.b_0"
                                    )
    output = fluid.layers.concat([self_feature, neigh_feature], axis=1)
    output = fluid.layers.l2_normalize(output, axis=1)
    return output
    
    
def softmax_agg(beta):
    """Implementation of softmax_agg aggregator, see more information in the paper
    "DeeperGCN: All You Need to Train Deeper GCNs"
    (https://arxiv.org/pdf/2006.07739.pdf)

    Args:
        msg: the received message, lod-tensor, (batch_size, seq_len, hidden_size)
        beta: Inverse Temperature

    Return:
        An output tensor with shape (num_nodes, hidden_size)
    """
    
    def softmax_agg_inside(msg):
        alpha = paddle_helper.sequence_softmax(msg, beta)
        msg = msg * alpha
        return fluid.layers.sequence_pool(msg, "sum")
    
    return softmax_agg_inside


def msg_norm(x, msg, name):
    """Implementation of message normalization, see more information in the paper
    "DeeperGCN: All You Need to Train Deeper GCNs"
    (https://arxiv.org/pdf/2006.07739.pdf)

    Args:
        x: centre node feature (num_nodes, feature_size)
        msg: neighbor node feature (num_nodes, feature_size)
        name: name for s

    Return:
        An output tensor with shape (num_nodes, feature_size)
    """
    s = fluid.layers.create_parameter(
            shape=[1],
            dtype='float32',
            default_initializer=
                fluid.initializer.ConstantInitializer(value=1.0),
            name=name + '_s_msg_norm')

    msg = fluid.layers.l2_normalize(msg, axis=1)
    x_norm = fluid.layers.reduce_sum(x * x, dim=1, keep_dim=True)
    msg = msg * x_norm * s
    return msg