node2vec.py 9.0 KB
Newer Older
Y
yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import time
import math
import os
import io
from multiprocessing import Pool
import glob

import numpy as np
import sklearn.metrics
from sklearn.metrics import f1_score

import pgl
from pgl import data_loader
from pgl.utils import op
from pgl.utils.logger import log
import paddle.fluid as fluid
import paddle.fluid.layers as l


def load(name):
    if name == "BlogCatalog":
        dataset = data_loader.BlogCatalogDataset()
    elif name == "ArXiv":
        dataset = data_loader.ArXivDataset()
    else:
        raise ValueError(name + " dataset doesn't exists")
    return dataset


def node2vec_model(graph, hidden_size=16, neg_num=5):

    pyreader = l.py_reader(
        capacity=70,
        shapes=[[-1, 1, 1], [-1, 1, 1], [-1, neg_num, 1]],
        dtypes=['int64', 'int64', 'int64'],
        lod_levels=[0, 0, 0],
        name='train',
        use_double_buffer=True)

    embed_init = fluid.initializer.UniformInitializer(low=-1.0, high=1.0)
    weight_init = fluid.initializer.TruncatedNormal(scale=1.0 /
                                                    math.sqrt(hidden_size))

    src, pos, negs = l.read_file(pyreader)

    embed_src = l.embedding(
        input=src,
        size=[graph.num_nodes, hidden_size],
        param_attr=fluid.ParamAttr(
            name='content', initializer=embed_init))

    weight_pos = l.embedding(
        input=pos,
        size=[graph.num_nodes, hidden_size],
        param_attr=fluid.ParamAttr(
            name='weight', initializer=weight_init))
    weight_negs = l.embedding(
        input=negs,
        size=[graph.num_nodes, hidden_size],
        param_attr=fluid.ParamAttr(
            name='weight', initializer=weight_init))

    pos_logits = l.matmul(
        embed_src, weight_pos, transpose_y=True)  # [batch_size, 1, 1]
    neg_logits = l.matmul(
        embed_src, weight_negs, transpose_y=True)  # [batch_size, 1, neg_num]

    ones_label = pos_logits * 0. + 1.
    ones_label.stop_gradient = True
    pos_loss = l.sigmoid_cross_entropy_with_logits(pos_logits, ones_label)

    zeros_label = neg_logits * 0.
    zeros_label.stop_gradient = True
    neg_loss = l.sigmoid_cross_entropy_with_logits(neg_logits, zeros_label)
    loss = (l.reduce_mean(pos_loss) + l.reduce_mean(neg_loss)) / 2

    return pyreader, loss


def gen_pair(walks, left_win_size=2, right_win_size=2):
    src = []
    pos = []
    for walk in walks:
        for left_offset in range(1, left_win_size + 1):
            src.extend(walk[left_offset:])
            pos.extend(walk[:-left_offset])
        for right_offset in range(1, right_win_size + 1):
            src.extend(walk[:-right_offset])
            pos.extend(walk[right_offset:])
    src, pos = np.array(src, dtype=np.int64), np.array(pos, dtype=np.int64)
    src, pos = np.expand_dims(src, -1), np.expand_dims(pos, -1)
    src, pos = np.expand_dims(src, -1), np.expand_dims(pos, -1)
    return src, pos


def node2vec_generator(graph,
                       batch_size=512,
                       walk_len=5,
                       p=0.25,
                       q=0.25,
                       win_size=2,
                       neg_num=5,
                       epoch=200,
                       filelist=None):
    def walks_generator():
        if filelist is not None:
            bucket = []
            for filename in filelist:
                with io.open(filename) as inf:
                    for line in inf:
                        walk = [int(x) for x in line.strip('\n').split(' ')]
                        bucket.append(walk)
                        if len(bucket) == batch_size:
                            yield bucket
                            bucket = []
            if len(bucket):
                yield bucket
        else:
            for _ in range(epoch):
                for nodes in graph.node_batch_iter(batch_size):
                    walks = graph.node2vec_random_walk(nodes, walk_len, p, q)
                    yield walks

    def wrapper():
        for walks in walks_generator():
            src, pos = gen_pair(walks, win_size, win_size)
            if src.shape[0] == 0:
                continue
            negs = graph.sample_nodes([len(src), neg_num, 1]).astype(np.int64)
            yield [src, pos, negs]

    return wrapper


def process(args):
    idx, graph, save_path, epoch, batch_size, walk_len, p, q, seed = args
    with open('%s/%s' % (save_path, idx), 'w') as outf:
        for _ in range(epoch):
            np.random.seed(seed)
            for nodes in graph.node_batch_iter(batch_size):
                walks = graph.node2vec_random_walk(nodes, walk_len, p, q)
                for walk in walks:
                    outf.write(' '.join([str(token) for token in walk]) + '\n')


def main(args):
    hidden_size = args.hidden_size
    neg_num = args.neg_num
    epoch = args.epoch
    p = args.p
    q = args.q
    save_path = args.save_path
    batch_size = args.batch_size
    walk_len = args.walk_len
    win_size = args.win_size

    if not os.path.isdir(save_path):
        os.makedirs(save_path)
    dataset = load(args.dataset)

    if args.offline_learning:
        log.info("Start random walk on disk...")
        walk_save_path = os.path.join(save_path, "walks")
        if not os.path.isdir(walk_save_path):
            os.makedirs(walk_save_path)
        pool = Pool(args.processes)
        args_list = [(x, dataset.graph, walk_save_path, 1, batch_size,
                      walk_len, p, q, np.random.randint(2**32))
                     for x in range(epoch)]
        pool.map(process, args_list)
        filelist = glob.glob(os.path.join(walk_save_path, "*"))
        log.info("Random walk on disk Done.")
    else:
        filelist = None

    train_steps = int(dataset.graph.num_nodes / batch_size) * epoch

    place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace()
    node2vec_prog = fluid.Program()
    startup_prog = fluid.Program()

    with fluid.program_guard(node2vec_prog, startup_prog):
        with fluid.unique_name.guard():
            node2vec_pyreader, node2vec_loss = node2vec_model(
                dataset.graph, hidden_size=hidden_size, neg_num=neg_num)
            lr = l.polynomial_decay(0.025, train_steps, 0.0001)
            adam = fluid.optimizer.Adam(lr)
            adam.minimize(node2vec_loss)

    node2vec_pyreader.decorate_tensor_provider(
        node2vec_generator(
            dataset.graph,
            batch_size=batch_size,
            walk_len=walk_len,
            win_size=win_size,
            epoch=epoch,
            neg_num=neg_num,
            p=p,
            q=q,
            filelist=filelist))

    node2vec_pyreader.start()

    exe = fluid.Executor(place)
    exe.run(startup_prog)

    prev_time = time.time()
    step = 0

    while 1:
        try:
            node2vec_loss_val = exe.run(node2vec_prog,
                                        fetch_list=[node2vec_loss],
                                        return_numpy=True)[0]
            cur_time = time.time()
            use_time = cur_time - prev_time
            prev_time = cur_time
            step += 1
            log.info("Step %d " % step + "Node2vec Loss: %f " %
                     node2vec_loss_val + " %f s/step." % use_time)
        except fluid.core.EOFException:
            node2vec_pyreader.reset()
            break

    fluid.io.save_persistables(exe,
                               os.path.join(save_path, "paddle_model"),
                               node2vec_prog)


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='node2vec')
    parser.add_argument(
        "--dataset",
        type=str,
        default="BlogCatalog",
        help="dataset (BlogCatalog, ArXiv)")
    parser.add_argument("--use_cuda", action='store_true', help="use_cuda")
    parser.add_argument(
        "--offline_learning", action='store_true', help="use_cuda")
    parser.add_argument("--hidden_size", type=int, default=128)
    parser.add_argument("--neg_num", type=int, default=20)
    parser.add_argument("--epoch", type=int, default=100)
    parser.add_argument("--batch_size", type=int, default=1024)
    parser.add_argument("--walk_len", type=int, default=40)
    parser.add_argument("--win_size", type=int, default=10)
    parser.add_argument("--p", type=float, default=0.25)
    parser.add_argument("--q", type=float, default=0.25)
    parser.add_argument("--save_path", type=str, default="./tmp/node2vec")
    parser.add_argument("--processes", type=int, default=10)
    args = parser.parse_args()
    log.info(args)
    main(args)