dataset_pgl.py 8.4 KB
Newer Older
L
liweibin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NodePropPredDataset for pgl
"""
import pandas as pd
import shutil, os
import os.path as osp
import numpy as np
from ogb.utils.url import decide_download, download_url, extract_zip
from ogb.nodeproppred import make_master_file  # create master.csv
Z
Zhong Hui 已提交
22 23
from pgl.contrib.ogb.io.read_graph_pgl import read_csv_graph_pgl, read_csv_heterograph_pgl
from ogb.io.read_graph_raw import read_node_label_hetero, read_nodesplitidx_split_hetero
L
liweibin 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56


def to_bool(value):
    """to_bool"""
    return np.array([value], dtype="bool")[0]


class PglNodePropPredDataset(object):
    """PglNodePropPredDataset
    """

    def __init__(self, name, root="dataset"):
        self.name = name  ## original name, e.g., ogbn-proteins
        self.dir_name = "_".join(
            name.split("-")
        ) + "_pgl"  ## replace hyphen with underline, e.g., ogbn_proteins_pgl

        self.original_root = root
        self.root = osp.join(root, self.dir_name)

        self.meta_info = make_master_file.df  #pd.read_csv(
        #os.path.join(os.path.dirname(__file__), "master.csv"), index_col=0)
        if not self.name in self.meta_info:
            error_mssg = "Invalid dataset name {}.\n".format(self.name)
            error_mssg += "Available datasets are as follows:\n"
            error_mssg += "\n".join(self.meta_info.keys())
            raise ValueError(error_mssg)

        self.download_name = self.meta_info[self.name][
            "download_name"]  ## name of downloaded file, e.g., tox21

        self.num_tasks = int(self.meta_info[self.name]["num tasks"])
        self.task_type = self.meta_info[self.name]["task type"]
Z
Zhong Hui 已提交
57 58 59
        self.eval_metric = self.meta_info[self.name]["eval metric"]
        self.__num_classes__ = int(self.meta_info[self.name]["num classes"])
        self.is_hetero = self.meta_info[self.name]["is hetero"]
L
liweibin 已提交
60 61 62 63 64 65 66 67 68 69 70 71

        super(PglNodePropPredDataset, self).__init__()

        self.pre_process()

    def pre_process(self):
        """pre_process downlaoding data
        """
        processed_dir = osp.join(self.root, 'processed')
        pre_processed_file_path = osp.join(processed_dir, 'pgl_data_processed')

        if osp.exists(pre_processed_file_path):
Z
Zhong Hui 已提交
72
            # TODO: Reload Preprocess files
L
liweibin 已提交
73 74 75
            pass
        else:
            ### check download
Z
Zhong Hui 已提交
76
            if not osp.exists(osp.join(self.root, "raw")):
L
liweibin 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
                url = self.meta_info[self.name]["url"]
                if decide_download(url):
                    path = download_url(url, self.original_root)
                    extract_zip(path, self.original_root)
                    os.unlink(path)
                    # delete folder if there exists
                    try:
                        shutil.rmtree(self.root)
                    except:
                        pass
                    shutil.move(
                        osp.join(self.original_root, self.download_name),
                        self.root)
                else:
                    print("Stop download.")
                    exit(-1)

            raw_dir = osp.join(self.root, "raw")
Z
Zhong Hui 已提交
95
            self.raw_dir = raw_dir
L
liweibin 已提交
96 97 98 99

            ### pre-process and save
            add_inverse_edge = to_bool(self.meta_info[self.name][
                "add_inverse_edge"])
Z
Zhong Hui 已提交
100 101
            add_inverse_edge = self.meta_info[self.name][
                "add_inverse_edge"] == "True"
L
liweibin 已提交
102

Z
Zhong Hui 已提交
103 104 105 106 107 108 109 110
            if self.meta_info[self.name]["additional node files"] == 'None':
                additional_node_files = []
            else:
                additional_node_files = self.meta_info[self.name][
                    "additional node files"].split(',')

            if self.meta_info[self.name]["additional edge files"] == 'None':
                additional_edge_files = []
L
liweibin 已提交
111
            else:
Z
Zhong Hui 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
                additional_edge_files = self.meta_info[self.name][
                    "additional edge files"].split(',')

            if self.is_hetero:
                self.graph = read_csv_heterograph_pgl(
                    self.raw_dir,
                    add_inverse_edge=add_inverse_edge,
                    additional_node_files=additional_node_files,
                    additional_edge_files=additional_edge_files)

                node_label_dict = read_node_label_hetero(self.raw_dir)
                y_dict = {}
                if "classification" in self.task_type:
                    for nodetype, node_label in node_label_dict.items():
                        # detect if there is any nan
                        if np.isnan(node_label).any():
                            y_dict[nodetype] = np.array(
                                node_label, dtype='float32')
                        else:
                            y_dict[nodetype] = np.array(
                                node_label, dtype='int64')
                else:
                    for nodetype, node_label in node_label_dict.items():
                        y_dict[nodetype] = np.array(
                            node_label, dtype='float32')
                self.labels = y_dict
L
liweibin 已提交
138

Z
Zhong Hui 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151
            else:
                self.graph = read_csv_graph_pgl(
                    raw_dir, add_inverse_edge=add_inverse_edge)

                ### adding prediction target
                node_label = pd.read_csv(
                    osp.join(raw_dir, 'node-label.csv.gz'),
                    compression="gzip",
                    header=None).values
                if "classification" in self.task_type:
                    node_label = np.array(node_label, dtype=np.int64)
                else:
                    node_label = np.array(node_label, dtype=np.float32)
L
liweibin 已提交
152

Z
Zhong Hui 已提交
153 154 155 156
                label_dict = {"labels": node_label}

                # TODO: SAVE preprocess graph
                self.labels = label_dict['labels']
L
liweibin 已提交
157 158 159 160 161 162

    def get_idx_split(self):
        """Train/Validation/Test split
        """
        split_type = self.meta_info[self.name]["split"]
        path = osp.join(self.root, "split", split_type)
Z
Zhong Hui 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
        if self.is_hetero:
            train_idx_dict, valid_idx_dict, test_idx_dict = read_nodesplitidx_split_hetero(
                path)
            for nodetype in train_idx_dict.keys():
                train_idx_dict[nodetype] = np.array(
                    train_idx_dict[nodetype], dtype='int64')
                valid_idx_dict[nodetype] = np.array(
                    valid_idx_dict[nodetype], dtype='int64')
                test_idx_dict[nodetype] = np.array(
                    test_idx_dict[nodetype], dtype='int64')
                # code refers dataset_pyg
                # TODO: check the code
                return {
                    "train": train_idx_dict,
                    "valid": valid_idx_dict,
                    "test": test_idx_dict
                }
        else:
            train_idx = pd.read_csv(
                osp.join(path, "train.csv.gz"),
                compression="gzip",
                header=None).values.T[0]
            valid_idx = pd.read_csv(
                osp.join(path, "valid.csv.gz"),
                compression="gzip",
                header=None).values.T[0]
            test_idx = pd.read_csv(
                osp.join(path, "test.csv.gz"), compression="gzip",
                header=None).values.T[0]

            return {
                "train": np.array(
                    train_idx, dtype="int64"),
                "valid": np.array(
                    valid_idx, dtype="int64"),
                "test": np.array(
                    test_idx, dtype="int64")
            }
L
liweibin 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213

    def __getitem__(self, idx):
        assert idx == 0, "This dataset has only one graph"
        return self.graph[idx], self.labels

    def __len__(self):
        return 1

    def __repr__(self):  # pragma: no cover
        return '{}({})'.format(self.__class__.__name__, len(self))


if __name__ == "__main__":
Z
Zhong Hui 已提交
214
    pgl_dataset = PglNodePropPredDataset(name="ogbn-mag")
L
liweibin 已提交
215 216 217
    splitted_index = pgl_dataset.get_idx_split()
    print(pgl_dataset[0])
    print(splitted_index)