reader.py 4.5 KB
Newer Older
Y
Yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import pickle as pkl
import paddle
import paddle.fluid as fluid
import socket
import pgl
import time

from pgl.utils import mp_reader
from pgl.utils.logger import log
from pgl import redis_graph


def node_batch_iter(nodes, node_label, batch_size):
    """node_batch_iter
    """
    perm = np.arange(len(nodes))
    np.random.shuffle(perm)
    start = 0
    while start < len(nodes):
        index = perm[start:start + batch_size]
        start += batch_size
        yield nodes[index], node_label[index]


def traverse(item):
    """traverse
    """
    if isinstance(item, list) or isinstance(item, np.ndarray):
        for i in iter(item):
            for j in traverse(i):
                yield j
    else:
        yield item


def flat_node_and_edge(nodes, eids):
    """flat_node_and_edge
    """
    nodes = list(set(traverse(nodes)))
    eids = list(set(traverse(eids)))
    return nodes, eids


def worker(batch_info, graph_wrapper, samples):
    """Worker
    """

    def work():
        """work
        """
        redis_configs = [{
            "host": socket.gethostbyname(socket.gethostname()),
            "port": 7430
        }, ]
        graph = redis_graph.RedisGraph("sub_graph", redis_configs, 64)
        first = True
        for batch_train_samples, batch_train_labels in batch_info:
            start_nodes = batch_train_samples
            nodes = start_nodes
            eids = []
            eid2edges = {}
            for max_deg in samples:
                pred, pred_eid = graph.sample_predecessor(
                    start_nodes, max_degree=max_deg, return_eids=True)
                for _dst, _srcs, _eids in zip(start_nodes, pred, pred_eid):
                    for _src, _eid in zip(_srcs, _eids):
                        eid2edges[_eid] = (_src, _dst)

                last_nodes = nodes
                nodes = [nodes, pred]
                eids = [eids, pred_eid]
                nodes, eids = flat_node_and_edge(nodes, eids)
                # Find new nodes
                start_nodes = list(set(nodes) - set(last_nodes))
                if len(start_nodes) == 0:
                    break

L
liweibin 已提交
92
            subgraph = graph.subgraph(nodes=nodes, eid=eids, edges=[ eid2edges[e] for e in eids])
Y
Yelrose 已提交
93 94 95 96 97 98 99 100 101 102 103 104
            sub_node_index = subgraph.reindex_from_parrent_nodes(
                batch_train_samples)
            feed_dict = graph_wrapper.to_feed(subgraph)
            feed_dict["node_label"] = np.expand_dims(
                np.array(
                    batch_train_labels, dtype="int64"), -1)
            feed_dict["node_index"] = sub_node_index
            yield feed_dict

    return work


L
liweibin 已提交
105 106
def multiprocess_graph_reader(
                              graph_wrapper,
Y
Yelrose 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
                              samples,
                              node_index,
                              batch_size,
                              node_label,
                              num_workers=4):
    """multiprocess_graph_reader
    """

    def parse_to_subgraph(rd):
        """parse_to_subgraph
        """

        def work():
            """work
            """
            last = time.time()
            for data in rd():
                this = time.time()
                feed_dict = data
                now = time.time()
                last = now
                yield feed_dict

        return work

    def reader():
        """reader"""
        batch_info = list(
            node_batch_iter(
                node_index, node_label, batch_size=batch_size))
        block_size = int(len(batch_info) / num_workers + 1)
        reader_pool = []
        for i in range(num_workers):
            reader_pool.append(
L
liweibin 已提交
141
                worker(batch_info[block_size * i:block_size * (i + 1)], 
Y
Yelrose 已提交
142 143 144 145 146 147 148
                       graph_wrapper, samples))
        multi_process_sample = mp_reader.multiprocess_reader(
            reader_pool, use_pipe=True, queue_size=1000)
        r = parse_to_subgraph(multi_process_sample)
        return paddle.reader.buffered(r, 1000)

    return reader()
L
liweibin 已提交
149