dataset_pgl.py 5.4 KB
Newer Older
L
liweibin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NodePropPredDataset for pgl
"""
import pandas as pd
import shutil, os
import os.path as osp
import numpy as np
from ogb.utils.url import decide_download, download_url, extract_zip
from ogb.nodeproppred import make_master_file  # create master.csv
from pgl.contrib.ogb.io.read_graph_pgl import read_csv_graph_pgl


def to_bool(value):
    """to_bool"""
    return np.array([value], dtype="bool")[0]


class PglNodePropPredDataset(object):
    """PglNodePropPredDataset
    """

    def __init__(self, name, root="dataset"):
        self.name = name  ## original name, e.g., ogbn-proteins
        self.dir_name = "_".join(
            name.split("-")
        ) + "_pgl"  ## replace hyphen with underline, e.g., ogbn_proteins_pgl

        self.original_root = root
        self.root = osp.join(root, self.dir_name)

        self.meta_info = make_master_file.df  #pd.read_csv(
        #os.path.join(os.path.dirname(__file__), "master.csv"), index_col=0)
        if not self.name in self.meta_info:
            error_mssg = "Invalid dataset name {}.\n".format(self.name)
            error_mssg += "Available datasets are as follows:\n"
            error_mssg += "\n".join(self.meta_info.keys())
            raise ValueError(error_mssg)

        self.download_name = self.meta_info[self.name][
            "download_name"]  ## name of downloaded file, e.g., tox21

        self.num_tasks = int(self.meta_info[self.name]["num tasks"])
        self.task_type = self.meta_info[self.name]["task type"]

        super(PglNodePropPredDataset, self).__init__()

        self.pre_process()

    def pre_process(self):
        """pre_process downlaoding data
        """
        processed_dir = osp.join(self.root, 'processed')
        pre_processed_file_path = osp.join(processed_dir, 'pgl_data_processed')

        if osp.exists(pre_processed_file_path):
            # TODO: Reload Preprocess files 
            pass
        else:
            ### check download
            if not osp.exists(osp.join(self.root, "raw", "edge.csv.gz")):
                url = self.meta_info[self.name]["url"]
                if decide_download(url):
                    path = download_url(url, self.original_root)
                    extract_zip(path, self.original_root)
                    os.unlink(path)
                    # delete folder if there exists
                    try:
                        shutil.rmtree(self.root)
                    except:
                        pass
                    shutil.move(
                        osp.join(self.original_root, self.download_name),
                        self.root)
                else:
                    print("Stop download.")
                    exit(-1)

            raw_dir = osp.join(self.root, "raw")

            ### pre-process and save
            add_inverse_edge = to_bool(self.meta_info[self.name][
                "add_inverse_edge"])
            self.graph = read_csv_graph_pgl(
                raw_dir, add_inverse_edge=add_inverse_edge)

            ### adding prediction target
            node_label = pd.read_csv(
                osp.join(raw_dir, 'node-label.csv.gz'),
                compression="gzip",
                header=None).values
            if "classification" in self.task_type:
                node_label = np.array(node_label, dtype=np.int64)
            else:
                node_label = np.array(node_label, dtype=np.float32)

            label_dict = {"labels": node_label}

            # TODO: SAVE preprocess graph
            self.labels = label_dict['labels']

    def get_idx_split(self):
        """Train/Validation/Test split
        """
        split_type = self.meta_info[self.name]["split"]
        path = osp.join(self.root, "split", split_type)

        train_idx = pd.read_csv(
            osp.join(path, "train.csv.gz"), compression="gzip",
            header=None).values.T[0]
        valid_idx = pd.read_csv(
            osp.join(path, "valid.csv.gz"), compression="gzip",
            header=None).values.T[0]
        test_idx = pd.read_csv(
            osp.join(path, "test.csv.gz"), compression="gzip",
            header=None).values.T[0]

        return {
            "train": np.array(
                train_idx, dtype="int64"),
            "valid": np.array(
                valid_idx, dtype="int64"),
            "test": np.array(
                test_idx, dtype="int64")
        }

    def __getitem__(self, idx):
        assert idx == 0, "This dataset has only one graph"
        return self.graph[idx], self.labels

    def __len__(self):
        return 1

    def __repr__(self):  # pragma: no cover
        return '{}({})'.format(self.__class__.__name__, len(self))


if __name__ == "__main__":
    pgl_dataset = PglNodePropPredDataset(name="ogbn-proteins")
    splitted_index = pgl_dataset.get_idx_split()
    print(pgl_dataset[0])
    print(splitted_index)